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An Exposition on the Algebra and Computation

of Persistent Homology.

Abstract. We discuss the algebra behind the matrix reduction algorithm for persistent ho-

mology, as presented in the paper “Computing Persistent Homology” by Afra Zomorodian and

Gunnar Carlsson, in the lens of the more modern characterization of persistence modules as

functors from a poset category to a category of vector spaces over a field adopted by authors

such as Peter Bubenik, Frederik Chazal, and Ulrich Bauer.

Author’s Note for the Second Version.

This copy of the paper is a corrected version of the expository paper submitted in February

2024 before my final oral examination (defense). Because of time constraints and other personal

and health issues, a non-negligible number of errors were not fixed or were not caught in time.

Listed below are the major differences and changes:

(i) Section 2.3 and Section 2.5 contain significant changes and corrections in the exposition

and commentary. The definitions and results presented remain mostly the same, e.g. with

minor changes in notation.

(ii) The entirety of Section 2.4 is re-written. When I was first writing this section, I only

had a tenuous grasp of graded module theory, and this was reflected in the definitions

and explanations I provided. I was also missing a number of important definitions (e.g.

graded submodule) and results (e.g. quotients of graded modules by graded submodules

are graded).

(iii) Introductions to Chapter 3 and to Chapter 4 are added.

(iv) Errors in the commentary and examples of Section 3.2 were fixed. Additional commentary

and images were included at several points.

(v) Section 3.3 had several significant errors, e.g. missing definitions for objects used in the

next chapter, incorrect examples. Some crucial results, e.g. Proposition 3.3.18, were also

not identified in the previous version.

(vi) Section 4.3 “Graded Invariant Factor Decompositions and SNDs” of the old version was

divided into three sections for better exposition: Section 4.3, Section 4.4, and Sec-

tion 4.5. The content is mostly unchanged, with some additional commentary and minor

changes to formatting.

(vii) Section 4.6 “Matrix Calculation of Homology of Graded Chain Complexes” was missing

in the old version because I forgot to uncomment the import line in my LATEX set-up and

somehow missed this in the review. This section contains a brief explanation about how

the results for ungraded chain complexes extend nicely for graded chain complexes, and

another example calculation of persistent homology.

(viii) The list of symbols in Appendix A1 is now grouped by topic. Corrections made in

the previous chapters are also reflected here. Several errors and formatting issues were

corrected in Appendix A2. Some comments made in the previous chapters involving

modules were collected and moved to Appendix A3.

Please note that a significant part of the edits done in this version have not been reviewed or

approved by my advisor (Dr. Christine Escher) as these were made after I had graduated.

— Jason Ranoa
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Introduction

Topological data analysis (TDA) is a relatively new field of study that seeks real-world applications of the theory

of algebraic topology. One such application involves the identification of features on finite datasets (as finite

metric subspaces of RN ) by investigating a family of topological spaces constructed using said dataset over some

parameter.

For example, given the dataset X = {x1, x2, x3, x4} ⊆ R2 with x1 = (2, 22), x2 = (6, 15), x3 = (22, 30),

and x4 = (30, 15), we can construct a family {Xr : r ∈ R≥} of topological subspaces of R2 by taking the union

of 2-disks centered at each xi with radius r ∈ [0,∞). This construction produces 6 subspaces distinct up to

homeomorphism, as illustrated below:

X3 X6 X10 X10.9 X11.5 X13

(r = 3) (r = 6) (r = 10) (r = 10.9) (r = 11.5) (r = 13)

The collection of homology groups Hn(Xr) with r ∈ R≥0 and n ∈ N0 and the images of the maps Hn(Xr) →
Hn(Xs) on homology induced by the inclusions is,r : Xr → Xs is what we call the persistent homology of the

family {Xr}. This persistent homology then is used to determine certain characteristics of the dataset X. In

the example above, we can determine that the points of X are near one another since the space Xr merges into

one path component as early as r = 10.9.

In practice, the calculation of persistent homology happens at the level of simplicial complexes. Following

the example above, an abstract simplicial complex Cr(X) called the Čech complex of X with parameter r is

constructed for each r ∈ R≥0 using the following rule:

For each subset S of X with n = card(S) ≥ 1, S is an (n − 1)-simplex of Cr(X) if and only if

the collection of the 2-disks centered at each xi ∈ S with radius r has non-trivial intersection as

subspaces of R2.

There are seven distinct abstract simplicial complexes in the family {Cr(X) : r ∈ R≥0} of Čech complexes, as

illustrated below. For clarity, the elements {x1, x2, x3, x4} of X are denoted as {a, b, c, d} respectively when used

as vertices of Cr(X).

C3(X) C6(X) C10(X) C10.9(X) C11.5(X) C13(X) C15(X)
added a, b, c, d added ab added cd added bc added abc added ad, acd full complex of X

The collection {Hn(Cr(X)) : r ∈ R≥0} of simplicial homology groups then determines the persistent homology

of X by the Nerve Theorem, which primarily states that Hn(Xr) ∼= Hn(Cr(X)) as abelian groups for all r ∈ R≥0

and n ∈ N0.

In this expository paper, we consider a more general case and discuss the persistent homology Hn(K•;F) of
N0-indexed filtrations K• = {Kt}t∈N0

of abstract simplicial complexes (wherein Kt ⊆ Ks whenever t ≤ s). More

specifically, we talk about the algebraic background needed for the matrix reduction algorithm for persistent

homology discussed in the following paper:
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Computing Persistent Homology [ZC05] by Afra Zomorodian and Gunnar Carlsson.

The concepts discussed in this paper were then used as basis for a number of software packages such as Ripser

[Bau21], a C++ package written by Ulrich Bauer that calculates the persistent homology of Vietoris-Rips filtra-

tions, taking finite metric subspaces of RN as input.

This expository paper talks about the concepts in [ZC05] in the perspective of category theory. We have

included an introductory-level discussion of category theory in Appendix A4. For general texts on category

theory, we recommend Category Theory in Context [Rie16] by Emily Riehl and Introduction to Homological

Algebra [Rot08] by Joseph J. Rotman.

Much like how the homology groups Hn(K;R) of a simplicial complex K with coefficients in a principal

ideal domain (PID) R are encoded as R-modules, we characterize the persistent homology Hn(K•;F) of a

filtration K• with coefficients in a field F as a persistence module over F. This paper is organized as follows:

In Chapter 1: We provide necessary background information involving simplicial complexes and simplicial

homology with coefficients in a PID R, as well as identify a number of results that will be

useful in the characterization of persistent homology.

In Chapter 2: We define persistence modules over a field F as a diagram, i.e. as functors Poset(N0,≤) →
VectF, describe the interval decomposition of a persistence module (which is unique up to

persistence isomorphism), and present a category equivalence between the category PersF of

persistence modules and the category GrModF[x] of graded F[x]-modules.

In Chapter 3: We introduce simplicial filtrations as functors of the form Poset(N0,≤) → A-Simp and

characterize the persistent homology of these filtrations as persistence modules. We also

describe how simplicial homology can be extended to the case of persistence modules, which

we call simplicial persistent homology, and discuss the objects in GrModF[x] brought about

by applying the category equivalence between persistence modules and graded modules.

In Chapter 4: We discuss how the invariant factor decomposition of the homology of free chain complexes

of R-modules can be calculated using the Smith Normal Decomposition (SND) of matrices

over R and how this calculation can be extended to the case of graded F[x]-modules. We also

discuss how this method of calculation, along with simplicial persistent homology, can be

used to find the interval decomposition of persistence modules corresponding to persistent

homology.
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Chapter 1. Simplicial Homology

In this chapter, we review a number of definitions and results involving the simplicial homology of simplicial

complexes. In the field of persistent homology theory, the term simplicial complex is conventionally used to

refer to an abstract simplicial complex

Note that this chapter is not supposed to be a rigorous or thorough treatment of simplicial homology

theory but instead covers constructions that are immediately relevant in our discussion of persistent homology.

As such, proofs for most of the propositions and theorems in this chapter are not provided in this paper but

can be found in standard algebraic topology textbooks. This chapter is divided into the following sections:

Section 1.1. Simplicial Complexes and Geometric Realizations

We discuss abstract simplicial complexes, which are representations of certain topological

spaces, and review some terminology and results.

Note that, after this section, we often drop the modifier abstract when referring to an

abstract simplicial complex, following convention.

Section 1.2. Simplicial Homology with Coefficients in a PID

We provide definitions for the constructions involved in the simplicial homology of (abstract)

simplicial complexes and identify homology as an invariant of the homeomorphism type of

topological spaces.

Section 1.3. Functorial Constructions in Simplicial Homology

We define the category A-Simp of (abstract) simplicial complexes and simplicial maps

and discuss why the constructions discussed in the previous section correspond to func-

tors A-Simp → ModR and A-Simp → Ch-ModR where ModR refers to the category of

R-modules and R-module homomorphisms and Ch-ModR refers to the corresponding chain

complex category.

This functorial perspective of simplicial homology will be relevant in Chapter 3 when

we discuss persistent homology.

Listed below are the main references used in this chapter (in order of decreasing relevance):

1. An Introduction to Algebraic Topology [Rot88] by Joseph J. Rotman.

2. Algebraic Topology [Hat02] by Allen Hatcher.

3. Elements of Algebraic Topology [Mun93] by James Munkres.
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Section 1.1. Simplicial Complexes and Geometric Realizations

In this section, we define a combinatorial representation of topological spaces called a simplicial complex. There

are generally two types of simplicial complexes used in algebraic topology:

1. Abstract Simplicial Complexes (given in Definition 1.1.1), which are combinatorial representations. We

have found that, in the field of persistent homology, the term simplicial complex conventionally refers

to this type of simplicial complex. We follow this convention in this expository paper.

2. Geometric Simplicial Complexes (given in Definition 1.1.8), which are representations of topological

spaces as a collection of subsets of RN for sufficiently high N . Note that, in the more general field of

algebraic topology, the term simplicial complex usually refers to this type of simplicial complex, as seen

in [Hat02] and [Mun93].

For clarity, we do not drop the modifier abstract and geometric when discussing simplicial complexes in this

section. However, under certain finiteness conditions, there is a correspondence between these two types of

simplicial complexes.

We start with a definition for abstract simplicial complexes, taken from [Rot08, p141].

Definition 1.1.1. An abstract simplicial complex K is a collection of nonempty subsets of some set V

such that the following properties are satisfied:

i. For all v ∈ V , {v} ∈ K, i.e. all vertices are in K.

ii. For all sets τ ∈ K, if σ is non-empty subset of τ , then σ ∈ K.

The set V is called the vertex set of K, denoted Vert(K) := V , and an element v ∈ V is called a vertex of

K. If V is finite, K is called a finite simplicial complex.

A simplex σ is a set in K. If card(σ) = n + 1, then σ ∈ K is called an n-simplex of K with dimension

n ∈ N0 denoted by dim(σ) = n. A face of σ is another simplex τ of K such that τ is a subset of σ, denoted

τ ⊆ σ. If dim(τ) = dim(σ)− 1, τ is called a facet of σ.

The dimension of K, denoted dim(K), is the maximum dimension of its simplices. In this case, we say K is

n-dimensional and write dim(K) = n. A simplicial complex L is called a subcomplex of K if every simplex

τ ∈ L is in K.

Remarks. (1) Note that, in the context of calculating simplicial homology (as in Section 1.2) and simplicial

persistent homology (later in Section 3.3), we often assume that the simplicial complex K is

finite. While we make an effort to identify this finiteness condition when relevant, some papers

(e.g. [ZC05]) implicitly assume that simplicial complexes are finite.

(2) Outside of this section, we often denote n-simplices using string notation as opposed to set

notation for brevity, e.g. we write abc to refer to the 2-simplex {a, b, c}. We justify this convention

later in Section 1.2 under Remark 1.2.2 in the context of simplicial homology.

Note that card(A) refers to the cardinality of some set A. In this paper, we have chosen not to use the

conventional notation of |A| for cardinality since the operator |− | is used differently in the context of simplicial

complexes. Note that for simplices σ, card(σ) = dim(σ) + 1. We state some remarks about the vertex set

V := Vert(K) of a simplicial complex K:

1. The vertex set V is often not explicitly identified in a specification of K since V can be identified by

V =
⋃
σ∈K σ and V =

⋃{
σ ∈ K : card(σ) = 1

}
i.e. as the union of all simplices of K i.e. as the union of all 0-simplices of K
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2. Observe that K can be seen as a subset of the power set 2V of V . Therefore, if V is finite, then 2V is

finite and K ⊆ 2V is also finite as a set.

As a sidenote, the notation 2V for the power set of V comes from the fact that for each set P ∈ 2V ,

the set P can be seen as a collection of choices, one for each v ∈ V , whether either v is included in P

or not included in P (i.e. two possible choices for each v ∈ V ).

While the vertex set V := Vert(K) of an abstract simplicial complex can consist of points in RN for sufficiently

high N , the elements of V are often defined and interpreted to be indeterminates. Consequently, the vertex set

V and the simplicial complexK generally do not have inherently topological or geometric characteristics. Hence,

the modifier abstract in the name abstract simplicial complexes. As a sidenote, some references call abstract

simplicial complexes as combinatorial simplicial complexes for the same reason. We provide an example of an

abstract simplicial complex below.

Example 1.1.2. Let V = {a, b, c, d} be a set of indeterminates. The collection K, as given below, is an abstract

simplicial complex:

K =


{a}, {b}, {c}, {d},
{a, b}, {a, c}, {b, c}, {a, d}, {b, d},
{a, b, c}, {a, b, d}


Observe that the non-empty subsets of {a, b, c}, i.e. the sets {a, b}, {b, c}, {a, c} and {a}, {b}, {c} are all in K.

The same applies to those of {a, b, d}.

Abstract simplicial complexes can be related to each other using simplicial maps. We provide a definition

below, taken from [Rot88, p141].

Definition 1.1.3. Let K and L be simplicial complexes.

i. A function f : K → L is called a simplicial map if for all n-simplices σ = {v0, . . . , vn} of K,

f(σ) =
{
f(v0), . . . , f(vn)

}
is a simplex of L (not necessarily of dimension n).

ii. If there exists a simplicial map f : K → L such that σ is an n-simplex of K if and only if f(σ) is an

n-simplex of L, then we call f a simplicial isomorphism and say K is isomorphic to L. Note that

f : K → L is a simplicial isomorphism if and only if f : K → L is a bijection (between sets of sets).

Note that a simplicial map f : K → L is determined by its restriction f : Vert(K) → Vert(L) into the vertex

sets of K and L.

Observe that a simplicial isomorphism is a correspondence between the vertex sets of two simplicial com-

plexes. As such, we can interpret a simplicial isomorphism to be a relabeling or renaming of the vertices of a

simplicial complex. We provide an example of this renaming below:

Example 1.1.4. Let K be as given in Example 1.1.2 and define the simplicial complex L using the simplicial

map f : Vert(K)→ Vert(L) given by a 7→ v1, b 7→ v2, c 7→ v3, and d 7→ v4. Then, L is as follows:

K =


{a}, {b}, {c}, {d},
{a, b}, {a, c}, {b, c}, {a, d}, {b, d},
{a, b, c}, {a, b, d}

 f
−−−−−→ L =


{v1}, {v2}, {v3}, {v4},
{v1, v2}, {v1, v3}, {v2, v3}, {v1, v4}, {v2, v4},
{v1, v2, v3}, {v1, v2, v4}


We can also define L first as above and define the simplicial map f : K → L by a 7→ v1, b 7→ v2, c 7→ v3, and

d 7→ v4, i.e. writing a correspondence between the vertices of K to those of L. In this case, f defines a simplicial
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isomorphism.

To gain topological information from abstract simplicial complexes, we relate them to geometric simplicial

complexes. As suggested by the modifier geometric, these are composed of geometric spaces like lines, triangles,

and their n-dimensional analogs and are, therefore, more suited for topology-related interpretations, e.g. as

spaces in RN . Before we provide a definition for geometric n-simplices, we list some notation and terminology

for affine spaces and convex hull below, taken from [Rot88, Chapter 2].

1. A subset A ⊆ RN is an affine space if for every pair of distinct points x, y ∈ A, the line passing through

x and y is contained in A. Equivalently, A ⊆ RN is an affine space if there exists a ∈ RN and a vector

subspace V of RN such that A = a + V = {a+ v : v ∈ V }, i.e. an affine space is a translated vector

subspace of RN .

2. Given a set X ⊆ RN , the affine hull aff(X) of X is the smallest affine space in RN that contains X.

If X = {x0, x1, . . . , xn}, aff(X) is given by

aff(X) =

{
n∑
i=0

tixi ∈ RN :

n∑
i=0

ti = 1

}
=

{
x0 +

n∑
i=1

ti(xi − x0) : t1, . . . , tn ∈ R

}
= x0 + span{x1 − x0, . . . , xn − x0}

We call aff(X) the affine hull spanned by X.

3. A set X = {x0, x1, . . . , xn} in RN is called affinely independent if the only subset Y of X such that

aff(Y ) = aff(X) is X itself. Equivalently, X is affinely independent if the set {x1 − x0, . . . , xn − x0} is
linearly independent. X is called affinely dependent if X is not affinely independent.

4. Let A ⊆ RN be an affine space such that A = a + V for some a ∈ RN and subspace V of RN with

dimension n (as a vector subspace). Then, the dimension of A is n, denoted dim(A) = n, and we call

A an n-plane. If A is spanned by an affinely independent set {x0, . . . , xn}, then dim(A) = n.

5. The convex hull conv(X) of a set X ⊆ RN is the smallest convex set in RN containing X. If

X = {x0, . . . , xn}, then conv(X) is given as follows:

conv(X) = conv
(
{x0, . . . , xn}

)
=

{
n∑
i=0

tixi ∈ RN :

n∑
i=0

ti = 1 with ti ≥ 0

}

Observe that conv(X) ⊆ aff(X).

Note that there are various properties listed above that need to be proven, e.g. an affine space is translated

vector subspace and dim(A) is well-defined. We refer to [Rot88, Chapter 2] for such properties. We provide an

example below involving affine spaces and the affine independence/dependence of sets.

Example 1.1.5. The sets A = {a, b, c} ⊂ R2 and P = {p, q, r, w} ⊂ R3, as illustrated below, are affinely

dependent sets. The affine dependence of A can be shown by the non-empty intersection of the affine hull of

{a, b} (a line) with {c} and that of P by the non-empty intersection of the affine hull of {p, q, r} (the yz-plane)
and {w}.
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Symbolically, aff{A} = aff{a, b} and aff{P} = aff{p, q, r} despite {A} ≠ {a, b} and {P} ≠ {p, q, r}. Note that

sets {a, b} = A \ {c} and {p, q, r} = P \ {w} are both affinely independent.

Having these definition for affine planes and convex hulls allow a nice characterization of geometric n-

simplices, as stated below.

Definition 1.1.6. A geometric n-simplex σ = [x0, . . . , xn] in RN is the convex hull σ := conv(x0, . . . , xn)

of some affinely independent set X = {x0, . . . , xn} of points in RN . The elements x0, . . . , xn are called the

vertices of σ and we say that σ is spanned by X. The dimension dim(σ) of σ is given by dim(σ) := n. When

n is arbitrary or unambiguous, we may refer to σ as a geometric simplex.

A simplex τ spanned by some Y ⊆ X is called a face of σ. When dim(τ) = dim(σ)− 1, τ is called a facet of

σ. The (geometric) boundary of σ is the collection of all its facets.

Remark. Observe that the terminology for geometric simplices is similar to those of (abstract) simplices. This

choice is intentional.

We provide an example below.

Example 1.1.7. Let X1 = {(0, 0)}, X2 = {(−1, 1), (1,−1)}, and X3 = {(0, 1), (−1,−1), (1,−1)} be collections

of points in R2. All X1, X2, X3 are affinely independent. Illustrated below are the simplices spanned by

X1, X2, X3 respectively with selected points expressed as linear combinations of the corresponding vertex sets.

As a consequence of the affine independence requirement of the geometric simplices, it can be proven that

each geometric n-simplex is a homeomorphic copy of every other geometric n-simplex, not necessarily living in

the same ambient space RN . See [Rot88, Theorem 2.10, Exercise 2.2.6]. Intuitively, this means that there is a

distinct geometric shape expected of an n-simplex for each n ∈ N0. For example:

1. Any geometric 0-simplex is a point.

2. Any geometric 1-simplex is a line, homeomorphic to the 1-disk D1 = [−1, 1] ⊆ R.

3. Any geometric 2-simplex is a filled-in triangle, homeomorphic to the 2-disk D2 (a circle with its interior).

4. Any geometric 3-simplex is a solid tetrahedron, homeomorphic to the 3-disk D3 (a solid sphere).

Thus, there is usually no reference to the ambient space RN and we assume that the ambient dimension N is

large enough, similarly to how we refer to other topological constructs like Sn (the n-sphere). More generally,

an n-simplex is homeomorphic to the n-disk Dn for all n ∈ N0 (with D0 taken to be point R0 = {0}). This

relationship also extends to the geometric boundary of n-simplices for n ≥ 1. For example:

1. The boundary of a geometric 1-simplex [x0, x1] is the set {[x1], [x2]} of 0-simplices, which is homeo-

morphic to the 1-sphere S0 = {−1, 1} ⊆ R. Note that the topological boundary of D1 = [−1, 1] as a

topological subspace of R is given by ∂(D1) = S0.

2. The boundary of a geometric 2-simplex [x0, x1, x2] is the set {[x0, x1], [x1, x2], [x0, x2]} of 1-simplices.

Observe that the union of these 1-simplices form a loop, which is homeomorphic to the 1-sphere S1, the
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topological boundary of the 2-disk D2 as a topological subspace of R2, as illustrated below:

That is, the union of the boundary of a geometric n-simplex is homeomorphic to the topological boundary

∂Dn = Sn−1 of the n-disk as a subset of Rn where Sn refers to the n-sphere Sn =
{
x ∈ Rn+1 : |x| = 1

}
. Once

we have established the relationship between geometric simplicial complexes and abstract simplicial complexes,

this notion of boundary extends to the simplices of abstract simplicial complexes as well. We see this later in

Section 1.2 in the context of simplicial homology.

A geometric simplicial complex is then a collection of these geometric simplices with certain properties.

We state this in more detail below.

Definition 1.1.8. A geometric simplicial complex K is a collection of simplices in RN such that

i. If σ ∈ K, every face of σ also belongs in K.

ii. If σ, τ ∈ K, then σ ∩ τ is either empty or a common face of σ and of τ .

We write Vert(K) to denote the vertex set of K given by the union of all geometric 0-simplices of K. The

Euclidean space RN is called the ambient space of K. A simplicial complex L is called a subcomplex of K

if Vert(L) ⊆ Vert(K). If K is a finite set, then K is called a finite geometric simplicial complex.

The underlying space or polytope |K| of K is the topological subspace of RN given by |K| :=
⋃
σ∈K σ,

i.e. the union of all simplices of K. A topological space X is called a polyhedron if there exists a geometric

simplicial complex K and a homeomorphism h : |K| → X. In this case, the pair (K,h) is called a triangulation

of X.

Remark. In this expository paper, we somewhat abuse notation for triangulations of topological spaces by not

specifying the homeomorphism h : |K| → X, i.e. we often say that K is a triangulation of X.

We want to emphasize that geometric simplicial complexes are a specific type of representation of topological

spaces and that both conditions, as given in Definition 1.1.8, have to be satisfied. In particular, an arbitrary

collection of simplices {σi}i∈I does not make a simplicial complex. We provide some examples below.

Example 1.1.9. The first two collections of simplices listed below correspond to geometric simplicial complexes

but the third does not.

1. The solid tetrahedron in R3 as a geometric simplicial complex.

Note that a, b, c, d are points in R3 with unidentified coordinates and are not indeterminates.

2. A geometric simplicial complex in R2.
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As with the previous item, a, b, c, d, e, f are points in R2.

3. The collection H, as illustrated below, is not a geometric simplicial complex since it violates condition

(ii) of Definition 1.1.8. One such pair that violates condition (ii) is the pair [a, c] and [c, d] since their

intersection, [c, d], is not a face of [a, c].

Observe that simply adding the simplex [a, b, c, d] to H does not fix the issue. The set {a, b, c, d} is not
an affinely independent set and, therefore, cannot generate a simplex. That is, the simplex [a, b, c, d] is

not defined.

Abstract simplicial complexes and geometric simplicial complexes are related using the following concept:

Definition 1.1.10. The vertex scheme KV of a geometric simplicial complex KG is the abstract simplicial

complex given by KV := {A ⊆ V : A spans some simplex in KG} with Vert(KV ) = Vert(KG) (as sets). Given

a simplicial complex KA, we say that geometric simplicial complex KG is a geometric realization of KA if

the vertex scheme KV of KG is isomorphic to KA.

Observe that, while we can always generate an abstract simplicial complex from a geometric simplicial

complex, the converse may not be true. However, if the abstract simplicial complex in question has finite

dimension, there always exist a corresponding geometric simplicial complex. We state this as a theorem below.

Theorem 1.1.11. Existence and Uniqueness (up to Homeomorphism) of Geometric Realizations

Every abstract simplicial complex K with dimension dim(K) = d has a geometric realization in R2d+1. Fur-

thermore, the polytopes of the geometric realizations of K are unique up to homeomorphism.

Remark. We refer to [Mat03, Theorem 1.6.1] for proof of the existence claim and [Mat03, Proposition 1.5.4]

for the claim of uniqueness up to homeomorphism.

The proof of the existence claim relies on constructing a geometric simplicial complex KG using

the moment curve. Label the vertices of K by Vert(K) = {vi}i∈I . By assumption, dim(σ) ≤ d and

card(σ) ≤ d + 1 for all simplices σ ∈ K. We can determine a lower bound on the dimension N of

the ambient space RN needed for KG by considering an upper bound on card(σ ∪ τ) with σ and τ

distinct simplices of K:

card(σ ∪ τ) ≤ card(σ) + card(τ) ≤ (d+ 1) + (d+ 1) = 2d+ 2

We defineN = 2d+1 and consider the moment curve γ(t) : R→ R2d+1 given by γ(t) = (t, t2, . . . , t2d+1).

The moment curve has the property that for any set G ⊆ γ(R) with card(G) ≥ 2d+2, any subset of

G of cardinality 2d+ 2 is affinely independent (i.e. G is in general position). We construct a vertex
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set X = {xi}i∈I of KG by assigning a unique ti ∈ R for each vertex vi ∈ Vert(K) and defining

xi := γ(ti). Then, we define KG by the condition: {vi0 , . . . , vin} is an n-simplex of K if and only if

[xi0 , . . . , xin ] is a geometric n-simplex of KG.

Observe that this result tells us that every abstract simplicial complex of finite dimension determines a

unique topological space by a geometric simplicial complex and that, assuming the dimension is finite, we can

go back and forth between representations as convenient. We provide an example below.

Example 1.1.12. The figure below illustrates a number of representations of the 2-disk D2.

The correspondence between these representations are identified below:

1. The geometric simplicial complex KG in R2 with Vert(KG) = {a, b, c} is a triangulation of D2 with

vertex scheme given by the abstract simplicial complex KA.

2. We relateKA to another abstract simplicial complexKB with Vert(KB) = {a1, a2, a3} using a simplicial

isomorphism. We can interpret this to be renaming of the vertices a, b, c of KA to a1, a2, a3 of KB

respectively.

3. KB has a geometric realization given by the geometric simplicial complex KH in R3 with Vert(KH) =

{e1, e2, e3} (the standard basis vectors on R3). Observe that KH is a triangulation of D2 either by

inspection of KH or by application of the uniqueness result of Theorem 1.1.11 on |KG| ∼= D2.

Observe that by Theorem 1.1.11, KA with d = 2 is guaranteed to have a geometric realization in R2d+1 = R5.

Note that the theorem does not state that 2d + 1 is the minimal dimension and, therefore, this example does

not contradict said theorem.
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Section 1.2. Simplicial Homology with Coefficients in a PID

In this section, we discuss the homology of simplicial complexes with coefficients in a PID R. Note that the

examples presented in this paper mostly consider cases wherein the coefficient ring is R = Z (in this case, the

homology group is an abelian group) or R = F is a field (in this case, the homology group is a F-vector space).

The construction of simplicial homology involves the creation of a chain complex of R-modules from an

abstract simplicial complex. We use the following definition for chain complexes, taken from [Rot88, p317].

A chain complex C∗ = (Cn, ∂n)n∈Z of R-modules is an Z-indexed collection of R-modules Cn
and R-module homomorphisms ∂n : Cn → Cn−1 such that for all n ∈ Z, ∂n ◦ ∂n+1 = 0. The R-

modules Cn are generally called chain groups and the homomorphisms ∂n are called differentials

or connecting homomorphisms.

We follow the convention in [Rot88] and use an asterisk (∗) as the “placeholder” for the index of a chain complex.

In contrast, other references, e.g. [Rie16; Rot08], use a bullet (•) and write C• = (Cn, ∂n)n∈Z. We reserve the

use of bullets for persistence modules, introduced later in Chapter 2.

We start with the definition for the chain groups in simplicial homology, adapted from [Rot88, Chapter 7].

Definition 1.2.1. Let K be a simplicial complex and R a PID. For each n ∈ Z with n ≥ 0, define the nth

simplicial chain group Cn(K;R) of K with coefficients in R to be the R-module with the following

presentation:

Generators: All (n+1)-tuples (v0, v1, . . . , vn) such that vi ∈ Vert(K) and {v0, . . . , vn} is an n-simplex of K.

Relations: For n = 0, none. For n ≥ 1, (v0, v1, . . . , vn)− (sgnπ)(vπ(0), vπ(1), . . . , vπ(n)) for all permutations

π : [n]→ [n] with [n] = {0, 1, . . . , n} where sgnπ = ±1 refers to the parity of π.

For n ∈ Z with n ≤ −1, define Cn(K;R) to be the trivial R-module. An n-chain is an element of Cn(K;R). If

R = Z, we often write Cn(K) := Cn(K;Z) and call Cn(K) the nth simplicial chain group of K, i.e. without

reference to the ring Z.

Remarks. (1) For brevity, we usually use the term “chain group” when referring to a simplicial chain group if

the relation to a simplicial complex is clear from context, e.g. we say Cn(K;R) is a chain group

of K if it has been stated that K is a simplicial complex.

(2) The (n + 1)-tuple (v0, v1, . . . , vn) described above can be seen as a total order (alternatively,

linear order) on the n-simplex σ := {v0, v1, . . . , vn}. In the statement above, it just so happens

that the indexing i on the vertices vi seems to follow the total order on [n] = {0, . . . , n} ⊆ N0.

Note that there cannot be repeated vertices on (v0, . . . , vn). Otherwise, card(σ) < n and σ

cannot be an n-simplex.

In the context of simplicial homology, the index n ∈ Z is usually called the dimension since each n-simplex

corresponds to an n-dimensional object. We follow his convention throughout this paper to distinguish n from

other indices. Note that the dimension being possibly negative for simplicial chain groups is not an issue since

Cn(K;R) for n < 0 is trivial. In fact, some references like [Hat02; Mun93] do not define such groups since chain

complexes in said references are not typically discussed outside a topological perspective.

Observe that Definition 1.2.1 defines simplicial chain groups as quotient modules and that the elements

of Cn(K;R) are cosets of formal sums of orderings of n-simplices of K. Relative to the conventional coset

notation, elements of Cn(K;R) should be written as sums of terms of the form
[
(v0, . . . , vn)

]
where (v0, . . . , vn)

is a specific ordering of the n-simplex {v0, . . . , vn}. To avoid the abundance of grouping symbols and for brevity,

we introduce alternative notation below.
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Remark 1.2.2. For each n-simplex σ = {v0, v1, . . . , vn} of some simplicial complex K, define the string

v0v1 · · · vn and the symbol [v0, . . . , vn] to refer to the coset
[
(v0, . . . , vn)

]
∈ Cn(K;R), specifically with coset

representative (v0, . . . , vn).

Note that we prefer using the string notation outside this section since we will be defining simplicial homol-

ogy groups later. That is, we prefer writing v0v1 · · · vn for elements of Cn(K;R) so that we write [v0v1 · · · vn],
as opposed to

[
[v0, v1, . . . , vn]

]
, for the elements of the simplicial homology group Hn(K;R) (defined later in

Definition 1.2.9). The notation [v0, . . . , vn] seems to be taken from that of geometric simplices, as stated in

Definition 1.1.6.

Next, we state a result about simplicial chain groups being free modules, taken from [Rot88, Lemma 7.10].

Proposition 1.2.3. Let K be a simplicial complex and R a PID. For all n ∈ Z, Cn(K;R) is a free R-module.

Proof. For n ≤ −1, Cn(K;R) is trivial and therefore free. Assume n ≥ 0. Let Gn be the free R-module

generated by (n + 1)-tuples (v0, . . . , vn) such that {v0, . . . , vn} is an n-simplex of K. Let Sn be the

(free) submodule of Gn generated by elements of the form (v0, . . . , vn)− (sgnπ)(vπ(0), . . . vπ(n)) with

{v0, . . . , vn} an n-simplex of K and π : [n]→ [n] a permutation. By definition, Cn(K;R) = Gn /Sn.

For each n-simplex σ = {v0, . . . , vn} of K: define Gn,σ to be the free R-module generated by all

(n + 1)-tuples of σ and Sn,σ to be the (free) submodule of Gn,σ generated by elements of the form

(v0, . . . , vn)− (sgnπ)(vπ(0), . . . vπ(n)). Then,

Gn =
⊕
σ∈K

dim(σ)=n

Gn,σ , Sn =
⊕
σ∈K

dim(σ)=n

Sn,σ and Cn(K;R) =
Gn
Sn

=
⊕
σ∈K

dim(σ)=n

(
Gn,σ
Sn,σ

)

Therefore, it suffices to check that each (Gn,σ /Sn,σ) is a free R-module.

Let σ = {v0, . . . , vn} be an n-simplex of K. Note that by labelling the vertices of σ, we are

implicitly imposing a total order on σ. Let (σ) := (v0, . . . , vn). Let π : [n] → [n] be a permutation

and let (σπ) ∈ Gn,σ refer to the tuple (σπ) := (vπ(0), . . . , vπ(n)). If π is an identity permutation, then

(σ)− (sgnπ)(σπ) = (σ)− (1)(σ) = 0. Otherwise, (σ)− (sgnπ)(σπ) ̸= 0.

Let Bn,σ be a set of elements in Gn,σ such that (σ)−(sgnπ)(σπ) ∈ Bn,σ if and only if π : [n]→ [n]

is not the identity permutation on [n]. Then, Bn,σ is a basis of Sn,σ and {(σ)} ∪ Bn,σ is a basis of

Gn,σ. Therefore, the quotient Gn,σ /Sn,σ is a free R-module with basis {[σ]} with [σ] := (σ) + Sn,σ.

Therefore, Cn(K;R) is a free R-module. A basis Bn of Cn(K;R) can be generated from the

union of the bases {[σ]} for each summand Gn,σ /Sn,σ. ■

Remark. In the proof above, we consider the direct sums to correspond to internal direct sums, wherein the

elements of the direct sum need not be tuples. For example, R⟨a⟩ ⊕ R⟨b⟩ = {r1a+ r2b : r1, r2 ∈ R}
(internal), as opposed to R⟨a⟩ ⊕R⟨b⟩ = {(r1a, r2b) : r1, r2 ∈ R} (external). However, since these two

notions uniquely determine an R-module up to R-module isomorphism, these are used somewhat

interchangeably.

We want to emphasize that in most texts including [Hat02] and [Rot88], simplicial chain groups are typi-

cally defined on oriented simplicial complexes. Below, we provide definitions for these notions, relative to our

definition of chain groups as stated in Definition 1.2.1.

Definition 1.2.4. Given an n-simplex σ = {v0, . . . , vn} of K, the coset [v0, . . . , vn] :=
[
(v0, . . . , vn)

]
∈

Cn(K;R) is called an oriented n-simplex. An orientation on a simplicial complex K is a total order
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on the vertex set Vert(K) of K. An oriented simplicial complex is a simplicial complex equipped with an

orientation.

Remark. Recall that a total order ≤ on a finite set A = {a0, . . . , an} corresponds to a linear ordering of

the same set, i.e. an ordered sequence (a0, a1, . . . , an) of elements of A defines a unique total order

a0 < a1 < · · · < an of A. Following that convention, we usually equip a orientation to a simplicial

complex K by using a tuple (v0, . . . , vN ) corresponding to a total order on Vert(K) = {v0, . . . , vN}.
Note that if the vertices of K are indexed with a totally ordered set (e.g. some subset of Z), the total
order on Vert(K) is often defined to correspond to the total order on said indexing set.

Observe that Definition 1.2.1 does not require that the simplicial complex be equipped with an orientation

beforehand. Here, we interpret orientation on the simplices ofK (not of the simplicial complexK) to be more of a

consequence of the definition of chain groups. In particular, the relation (v0, . . . , vn)−(sgnπ)(vπ(0), . . . , vπ(n)) ∈
Cn(K;R) corresponding to an n-simplex σ = {v0, . . . , vn} of K with n ≥ 1 in Definition 1.2.1 corresponds to

the following equivalence relation ∼ on the set of all total orders (written as tuples) on σ = {v0, . . . , vn}:

(v0, . . . , vn) ∼ (vπ(0), . . . , vπ(n)) if π : [n]→ [n] is an even permutation

(v0, . . . , vn) ∼ −(vπ(0), . . . , vπ(n)) if π : [n]→ [n] is an odd permutation

Note that parity (i.e. sgnπ) is not defined for permutations π : {0} → {0} on one element. The relation ∼
produces two equivalence classes for each n-simplex σ ofK with n ≥ 1, which are often interpreted to correspond

to orientations of the n-simplex σ as a geometric object (hence the name). We list some of these interpretations

below:

For n = 1: The geometric simplex corresponding to a 1-simplex {a, b} is a line segment. Then, an orientation

on {a, b} is interpreted to be a choice in direction of said line segment, as illustrated below:

For n = 2: The geometric simplex corresponding to a 2-simplex {a, b, c} is a triangle (more specifically, the

convex hull of a triangle). An orientation on this simplex is often interpreted to be a choice in the

direction of rotation about an axis normal to the affine 2-plane spanned by {a, b, c}. The 6 = 3!

possible total orders on {a, b, c} partition into two orientations, as illustrated below:

Note that which rotation is considered “counterclockwise” is determined by the right hand rule

on the chosen direction of the normal vector. This rotation can also be interpreted as a choice

of direction of the vector normal to the place, denoted in the illustration above by the red part

of the axis.

Then, multiplication of [v0, . . . , vn] by −1 ∈ R is interpreted to be a reversal in orientation. Unfortunately, this

interpretation loses effectiveness in higher dimensions (n ≥ 3) as it becomes harder to describe or visualize the
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orientation of n-dimensional objects. It does, however, provide a justification for the definition of boundary

maps.

Instead, we interpret an orientation on K to correspond to a choice of basis on each of the chain groups

Cn(K;R) of K. Since each n-simplex σ = {v0, . . . , vn} of a simplicial complex K is a subset of the vertex set

Vert(K) of K, an orientation on K imposes a total order on σ by restriction. Consequently, an orientation on a

simplicial complex K uniquely identifies an (n+1)-tuple for each n-simplex of K. This motivates the following

definition:

Definition 1.2.5. Let K be a simplicial complex and R a PID. Let ≤′ be a total order on Vert(K), i.e. an

orientation on K. For each n ∈ Z with n ≥ 0, let the standard ordered basis Kn of Cn(K;R) induced by

the orientation on K be the following set, ordered lexicographically with respect to ≤′:

Kn :=

{
[v0, . . . , vn] : {v0, . . . , vn} is an n-simplex of K and v0 ≤′ · · · ≤′ vn

}
with [v0, . . . , vn] as described in Remark 1.2.2, i.e. the symbol [v0, . . . , vn] and the string v0v1 · · · vn both refer

to the coset in Cn(K;R) specifically with coset representative (v0, . . . , vn).

Remark. Observe that there is an immediate one-to-one correspondence between the elements of Kn and the

n-simplices of K. Earlier in the proof of Proposition 1.2.3, Cn(K;R) is shown to be a direct sum of

free R-modules Gn,σ /Sn,σ, one for each n-simplex σ of K with basis determined by some arbitrarily

chosen total order (expressed as a tuple) on σ. Kn simply specifies which total order of σ is chosen

for each summand Gn,σ / Sn,σ. That is, the claim of Kn being a basis of Cn(K;R) is given by the

same proof as Proposition 1.2.3.

Note that the lexicographic order on Kn is not entirely critical for the construction of chain groups. For

example, [Rot88] defines an orientation on K more generally to be a partial order on K that restricts to a total

order on σ for each simplex σ ∈ K. In this case, we are not guaranteed that every vertex vk and wk of K

are comparable and lexicographic order may not be well-defined. Then, Kn can only be considered a standard

basis, as opposed to a standard ordered basis. However, since we will be calculating simplicial homology using

matrices in Chapter 4, having a “default” order on Kn becomes convenient for exposition.

Since we have defined an orientation on a simplicial complex K to be a total order ≤′ on Vert(K), a

lexicographic order on Kn is well-defined. More specifically, we refer to a lexicographic order on the tuples

(v0, . . . , vn) of the coset representative of Cn(K;R). Given two n-simplices {v0, . . . , vn} and {w0, . . . , wn} of K:

[v0, . . . , vn] ≤ [w0, . . . , wn] if and only if


there exists k ∈ [n] such that

vi = wi for all i = 0, . . . , k − 1

and vk ≤′ wk


In practice, this means that we compare the kth elements of (v0, . . . , vn) and of (w0, . . . , wn) in increasing index

k ∈ {0, . . . , n} until the vertices vk and wk are different. Then, whichever coset comes first in the order of Kn
is determined by whether vk or wk comes first in the order of Vert(K) (i.e. the orientation on K).

Below, we provide an example wherein we identify the chain groups of a simplicial complex K along with

the standard bases on said chain groups.

Example 1.2.6. Let K be a simplicial complex on the full simplex of V = {a, b, c, d}, i.e. the n-simplices of K

are exactly the subsets of V of cardinality n+ 1 and K has the geometric realization of a solid tetrahedron.

Equip K with the orientation by V = (a, b, c, d). Observe that the total order on Vert(K) = V is denoted

using a tuple. Given below are the standard ordered bases Kn on the chain groups Cn(K) = Cn(K;Z) of the
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oriented simplicial complex K:

K0 =
(
[a], [b], [c], [d]

)
K1 =

(
[a, b], [a, c], [a, d], [b, c], [b, d], [c, d]

) K2 =
(
[a, b, c], [a, b, d], [a, c, d], [b, c, d]

)
K3 =

(
[a, b, c, d]

)
with K = ∅ for n ∈ Z with n ̸= 0, 1, 2, 3. Observe that for n = 2, the oriented n-simplex [a, b, c] comes before

[a, b, d] since the first two entries match and we have c ≤ d as elements of V on the third entry. Similarly, [a, c, d]

is listed before [b, c, d] since on the first entry, we have a ≤ b on the first entry.

Following Remark 1.2.2, we may write [v0, . . . , vn] as a string v0 · · · vn of vertices for brevity. Then, we can

describe the nth chain groups Cn(K) of K as follows:

Cn(K) =



Z⟨a, b, c, d⟩ if n = 0

Z⟨ab, ac, ad, bc, bd, cd⟩ if n = 1

Z⟨abc, abd, acd, bcd⟩ if n = 2

Z⟨abcd⟩ if n = 3

0 otherwise

Examples of elements of C2(K) include σ1 = 2abc− abd and σ2 = 3acd+ 7abc− 10bcd.

Next, we provide a definition for the boundary map related to the simplicial chain groups.

Definition 1.2.7. Let K be a simplicial complex and R a PID. For each n ∈ Z with n ≥ 0, define the nth

boundary map or the nth boundary homomorphism ∂n : Cn(K;R) → Cn−1(K;R) to be the R-module

homomorphism given by

∂n

(
[v0, . . . , vn]

)
:=

n∑
i=0

(−1)i[v0, . . . , v̂i, . . . , vn] =
n∑
i=0

(−1)i[v0, . . . , vi−1, vi+1, . . . , vn] (E1)

where v̂i indicates the removal of the vertex vi in the ordering (v0, . . . , vn). For n < 0, ∂n : Cn(K;R) →
Cn−1(K;R) can only be the trivial homomorphism since Cn(K;R) = 0.

An n-cycle is an element of ker(∂)n ⊆ Cn(K;R) and an n-boundary is an element of im(∂n+1) ⊆ Cn+1(K;R).

Remark. It can be verified that Equation (E1) is well-defined for any choice of coset representative of σ ∈
Cn(K;R) (relative to Definition 1.2.1) and produces a well-defined homomorphism. In particular,

for any oriented n-simplex [σ] = [v0, . . . , vn] with an arbitrary coset representative (v0, . . . , vn) and

for any permutation π : [n]→ [n], it can verified that

∂n
(
[v0, . . . , vn]

)
:=

n∑
i=0

(−1)i[v0, . . . , v̂i, . . . , vn] = (sgnπ)

n∑
i=0

(−1)i[vπ(0), . . . , v̂π(i), . . . , vπ(n)]

=: (sgnπ) ∂n
(
[vπ(0), . . . , vπ(n)]

)
.

with the first and second equality being given by Equation (1).

Next, we state the property that determines that the collection of chain groups and boundary maps form

a chain complex.
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Proposition 1.2.8. For each n ∈ Z, ∂n∂n+1 = 0. That is, im(∂n+1) ⊆ ker(∂n).

Remark. This can be proven by direct calculation on a coset [v0, . . . , vn+1] ∈ Cn+1(K;R) with representative

(v0, . . . , vn+1). A similar argument is presented under the proof of [Rot88, Theorem 4.6].

Observe that this property on {∂n} allows us to take the quotient of the R-module ker(∂n) by its submodule

im(∂n+1). This quotient is exactly the simplicial homology of a simplicial complex. We state this in more detail

below.

Definition 1.2.9. The simplicial chain complex of a simplicial complex K with coefficients in a PID R

is the chain complex C∗(K;R) :=
(
Cn(K;R), ∂n

)
n∈Z of simplicial chain groups Cn(K;R) and boundary maps

∂n : Cn(K;R)→ Cn−1(K;R), illustrated as the following sequence:

· · ·
∂n+2−−−−→Cn+1(K;R)

∂n+1−−−−→Cn(K;R)
∂n−−→Cn−1(K;R)

∂n−1−−−−→· · ·

For each n ∈ Z, define the nth simplicial homology group Hn(K;R) and the nth Betti number βn(K;R)

of K with coefficients in R as follows:

Hn(K;R) :=
ker(∂n)

im(∂n+1)
and βn(K;R) := rank

(
Hn(K;R)

)
If R = Z, we write C∗(K) := C∗(K;Z) and Hn(K) := Hn(K;Z).

Remark. We follow the convention by [Rot88] and use (∗) as the “placeholder” of the index n ∈ Z of the chain

complex C∗ = (Cn, ∂n) with chain groups Cn and differentials ∂n : Cn → Cn−1.

Observe that if the simplicial complex K is a finite simplicial complex, then the nth chain group Cn(K;R)

must also be finitely generated for all n ∈ Z. In this case, Hn(K;R) is a finitely-generated module over a PID

R and the Structure Theorem (Theorem 4.1.1) for finitely-generated modules over R applies. We discuss this

and a method of calculating the homology of free chain complexes using matrices over R later in Chapter 4.

One of the key characteristics of simplicial homology is that it is an invariant of the homeomorphism type

of topological spaces. We state this in a theorem below.

Theorem 1.2.10. Let K and L be simplicial complexes and let R be a PID. If the geometric realizations of

K and L are homeomorphic as topological spaces, then Hn(K;R) ∼= Hn(L;R) as R-modules.

Remark. We refer to [Rot88, Theorem 7.13] for a proof. This theorem actually generalizes to the case of

homotopy equivalence, which is an equivalence weaker than a homeomorphism.

Note that there are other ways to define the homology of a topological space. With simplicial homology,

we can define the homology group Hn(X;R) of a topological space X to be the homology group Hn(K;R) of a

triangulation K of X. Observe that this is well-defined by Theorem 1.2.10, i.e. Hn(K;R) is determined up to

isomorphism regardless of the triangulation K. Note that this definition requires that a triangulation of X exist

in the first place. Homology can also be defined using other representations of spaces, e.g. singular homology

of topological spaces, simplicial homology of ∆-complexes, and cellular homology of CW-complexes. The key

point here is that all these homology theories must produce isomorphic homology groups as with simplicial

homology. We refer to the discussion in [Hat02, Theorem 2.27] about singular homology and [Hat02, Theorem

2.35] about cellular homology.

We can take advantage of this by comparing results from other homology theories against results from
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simplicial homology. This becomes particularly useful when the triangulations of a relatively simple space are

cumbersome or unwieldy. We provide an example of this below.

Example 1.2.11. Let K be the abstract simplicial complex given as follows, with simplices written as strings

(following Remark 1.2.2) for brevity and with vertex indices always taken modulo 3.

nine 0-simplices of K : Vert(K) = {a0, a1, a2, b0, b1, b2, c0, c1, c2}

twenty-seven 1-simplices of K :


aiai+1 bibi+1 cici+1

aibi bici ciai
aibi+1 bici+1 ciai+1

for i = 0, 1, 2


eighteen 2-simplices of K :

{
aiai+1bi+1, bibi+1ci+1, cici+1ai+1,

aibibi+1, bici, ci+1, ciai, ai+1
for i = 0, 1, 2

}
We can interpret K to be a geometric simplicial complex in R3 by defining the vertices of K as follows:

For each i ∈ {0, 1, 2} : ai := T

(
2π

3
i,
π

3

)
, bi := T

(
2π

3
i,−π

3

)
, ci := T

(
2π

3
i,−π

)
,

with T (u, v) =

 cos(u)
(
R+ r cos(v)

)
sin(u)

(
R+ r cos(v)

)
r sin(v)

 with r = 1 and R = 5.

We illustrate K as a geometric simplicial complex below and claim that there exists a triangulation |K| → T 2

to the torus T 2 parametrized by T (u, v) with (u, v) ∈ R× R.

The Geometric

Simplicial Complex K:

The Torus T 2

by T (u, v), (u, v) ∈ R× R:

We use the following color scheme for the simplices of K and their correspond-

ing images in T 2 under the triangulation |K| → T 2.

red : In K, the vertices ai and the three 1-simplices aiai+1 for i ∈
{0, 1, 2}. In T 2, the major circle given by T (u, π3 ) with u ∈ R.

blue : In K, the vertices bi and the three 1-simplices bibi+1 for i ∈
{0, 1, 2}. In T 2, the major circle given by T (u,−π3 ) with u ∈ R.

green : In K, the vertices ci and the three 1-simplices cici+1 for i ∈
{0, 1, 2}. In T 2, the major circle given by T (u,−π) with u ∈ R.

purple : In K, the nine 1-simplices aibi, bici, and ciai for i = 0, 1, 2. In

T 2, the three minor circles connecting the vertices ai, bi, ci given

by T ( 2π3 i, v) for v ∈ R for each i = 0, 1, 2.

gray : In K, all eighteen 2-simplices (triangles) and the nine 1-simplices

aibi+1, bici+1, and ciai+1 for i ∈ {0, 1, 2}.

For each i ∈ {0, 1, 2}, the thin gray loop in T 2 that connects the

vertices ai, bi+1, ci+2 are given by T (t, π3 + 2π
3 i− t) with t ∈ R.

Observe that K has 9 + 27 + 18 = 54 simplices and calculating its homology groups by hand can be very

cumbersome to do by hand, e.g. C1(K;Z) has 27 basis elements. Since K is a triangulation of T 2, we can use

Theorem 1.2.10 and the known homology groups of T 2 to determine Hn(K;Z) up to Z-module isomorphism as
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follows:

Hn(KT ;Z) ∼= Hn(T
2;Z) = Hn(T

2) ∼=


Z if n = 0

Z⊕ Z if n = 1

Z if n = 2

0 if n ≥ 3

For constrast, [Hat02, Example 2.3, p106] uses delta-complexes to calculate Hn(T
2) and the chain groups

corresponding to C0(T
2), C1(T

2), C2(T
2) have 1, 3, and 2 basis elements respectively. As a sidenote, it has been

proven that the minimal triangulation of T 2 consists of fourteen 2-simplices (triangles).
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Section 1.3. Functorial Constructions in Simplicial Homology

In this section, we discuss the functorial nature of the construction of the simplicial chain complex C∗(K;R) =(
Cn(K;R), ∂n

)
n∈Z for a simplicial complex K, as discussed in Section 1.2. For reference, we briefly discuss

categories and functors in Appendix A4. We consider the following categories in this section:

1. The category ModR of modules over a PID R and R-module homomorphisms.

2. The category Ch-ModR of chain complexes of R-modules and of chain maps.

Note that the category Ch-ModR has an accompanying chain homology functor Hn(−) : Ch-ModR → ModR
with the following assignments: Let C∗ = (Cn, ∂n)n∈Z and A∗ = (An, αn)n∈Z be chain modules with R-modules

Cn and An and differentials ∂n : Cn → Cn−1 and αn : An → An−1.

1. Hn(−) maps C∗ to its nth homology group Hn(C∗) defined by Hn(C∗) = ker(∂n)/ im(∂n+1). Note that

this is well-defined since im(∂n+1) ⊆ ker(∂n) by the definition of chain complexes.

2. Given a chain map f∗ : C∗ → A∗ with f∗ = {fn : Cn → An}n∈Z, Hn(−) maps f∗ to the R-module

homomorphism Hn(C∗) → Hn(A∗) induced by the map fn : Cn → An and the quotient (or cokernel)

construction. Note that the map on Hn(C∗) → Hn(A∗) is well-defined since fn−1∂n = αn ◦ fn by

definition of a chain map.

We claim that simplicial homology, as discussed in Section 1.2, corresponds to a composition of functors: one

that creates the simplicial chain complex C∗(K;R) of a simplicial complex K and the nth homology functor

on Ch-ModR. Recall that a functor F : C → D between categories C and D is an assignment of objects and

morphisms of C to those of D such that the following properties are satisfied:

(F1) For each morphism f : X → Y in C, the functor maps f to a morphism with domain F (X) and

codomain F (Y ), i.e. f 7→ F (f) : F (X)→ F (Y ).

(F2) The functor respects identity of objects and of morphisms: For all objects X in C with identity

morphism idX : X → X, the morphism F (idX) : F (X) → F (X) is exactly the identity of F (X) in

D, i.e. F (idX) = idF (X).

(F3) The functor respects composition of morphisms: For all composable pairs of morphisms f : X → Y

and g : Y → Z, F (g ◦ f) = F (g) ◦ F (f).

In this section, we argue that the construction of the nth chain group Cn(K;R) of a simplicial complex K and

of the simplicial chain complex C∗(K;R) correspond to the functors by defining the morphism assignments for

both and showing that the properties above are satisfied. To start, we state a result involving the formation of

the category of simplicial complexes.

Theorem 1.3.1. Abstract simplicial complexes and simplicial maps form a well-defined category.

Remark. This theorem is taken from [Rot88, Theorem 7.7], which states “a routine check” as proof. We believe

this refers to checking that the axioms listed in the definition of category, i.e. as listed Definition A4.1,

are satisfied. Since simplicial maps can be seen as functions between sets of sets, the composition

law and the identity morphism designed to each abstract simplicial complex follow those on the

category Set of sets and functions. Then, it suffices to check that composition is unital with identity

morphisms and is associative, i.e. Definition A4.1(iv,v).

Definition 1.3.2. Denote the category given in Theorem 1.3.1 by A-Simp and call it the category of sim-

plicial complexes and simplicial maps, or the category of simplicial complexes for convenience.
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We want to show that the construction of the chain groups in Definition 1.2.1 correspond to a functor

A-Simp→ModR with ModR being the category of R-modules and R-module homomorphisms. Definition 1.2.1

determines the object assignment. Below, we provide a definition for the corresponding morphism assignment,

taken from [Rot88].

Definition 1.3.3. Let f : K → L be a simplicial map between simplicial complexes K and L. For each n ∈ N0,

define the homomorphism fn,# : Cn(K;R)→ Cn(L;R) on the nth chain groups induced by f as follows:

fn,#
(
[σ]
)
= fn,#

(
[v0, v1, . . . , vn]

)
:=

{[
f(v0), f(v1), . . . , f(vn)

]
if f(σ) is an n-simplex in L

0 otherwise

where (v0, . . . , vn) is the coset representative of [σ] ∈ Cn(K;R) with σ = {v0, . . . , vn} and (f(v0), . . . , f(vn))

that of fn,#([σ]) ∈ Cn(K;R) of the n-simplex f(σ) = {f(v0), . . . , f(vn)}.

Remark. For brevity, we often suppress the dimension n in fn,#, i.e. we write f# for fn,#

Note that this construction is defined on the coset representatives of Cn(K;R). Consequently, if L is

equipped with an orientation and the standard basis L[n] by Definition 1.2.5 is used, appropriate sign changes

might be needed for [f(v0), . . . , f(vn)] ∈ Cn(L;R), i.e.[
f(v0), . . . , f(vn)

]
= (sgnπ)

[
f(vπ(0)), . . . , f(vπ(n))

]
where π : [n] → [n] permutes the vertices of f(σ) such that

(
f(vπ(0)), . . . , f(vπ(n))

)
is ordered with respect to

the orientation on L.

Observe that the definition fn,# : Cn(K;R) → Cn(L;R) above already satisfies property F1. Below, we

state that this also satisfies the other two properties required for functors.

Proposition 1.3.4. Let R be a PID and let n ∈ Z.

i. Let K be a simplicial complex with identity simplicial map idK : K → K. Then, (idK)# = idCn(K;R).

ii. Let f : K1 → K2 and g : K2 → K3 be simplicial maps on simplicial complexes K1, K2, and K3. Then,

(g ◦ f)# = g# ◦ f#.

Remark. This can be proven by calculation on some arbitrary element [σ] = [v0, . . . , vn] of Cn(K;R) or

Cn(K1;R) with σ = {v0, . . . , vn} an n-simplex of K.

Since Definition 1.3.3 satisfies properties F1, F2, and F3 for functors, we can define the construction of the

nth chain group Cn(K;R) as a functor, as given below.

Definition 1.3.5. For each n ∈ Z, define nth simplicial chain group functor Cn(−;R) : A-Simp→ModR
with coefficients in a PID R as follows:

i. The object assignment maps a simplicial complex K to the nth chain group Cn(K;R) as given by

Definition 1.2.1.

ii. The morphism assignment maps a simplicial map f : K → L between simplicial complexes K and L to

map f# : Cn(K;R)→ Cn(L;R) given by Definition 1.3.3.

If R = Z, we write Cn(−) := Cn(−;Z).

To construct the functor A-Simp → Ch-ModR, we claim that we can simply collect all maps fn,# :
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Cn(K;R) → Cn(L;R) on the chain groups induced by a simplicial map f : K → L to define a chain map

between the simplicial chain complexes C∗(K;R) and C∗(L;R). The following result allows us to do this:

Proposition 1.3.6. Let f : K → L be a simplicial map between simplicial complexes K and L. For all n ∈ Z,

fn−1,# ◦ ∂Kn = ∂Ln ◦ fn,#

where ∂Kn : Cn(K;R) → Cn−1(K;R) and ∂Ln : Cn(K;L) → Cn−1(K;L) refer to the nth simplicial boundary

map of K and L respectively, i.e. the following diagram commutes:

Cn(K;R) Cn−1(K;R)

Cn(L;R) Cn−1(L;R)

∂Kn

fn,# fn−1,#
∂Ln

That is, the collection {fn,#}n∈Z determines a chain map {fn,#} : C∗(K;R)→ C∗(L;R).

Remark. This can be proven by direct calculation on an arbitrary element [v0, . . . , vn] ∈ Cn(K;R) with coset

representative (v0, . . . , vn) on an n-simplex {v0, . . . , vn} of K. Note that boundary maps, as given in

Definition 1.2.7, are well-defined on any choice of coset representative.

Observe that the chain map given by {fn,#}n∈Z, as denoted above, already satisfies the domain and

codomain property of functors as stated in Property F1. The fact that {fn,#}n∈Z respects identity as in

Property F2 and respects composition as in Property F3 follows from those properties being satisfied by fn,#
for each n ∈ Z separately. Therefore, we can define a functor on A-Simp→ Ch-ModR as follows:

Definition 1.3.7. Define the nth simplicial chain complex functor C∗(−;R) : A-Simp→ Ch-ModR with

coefficients in a PID R as follows:

i. C∗(−;R) maps a simplicial complex K to the simplicial chain complex C∗(K;R) = (Cn(K;R), ∂n)n∈Z
as given by Definition 1.2.9.

ii. C∗(−;R) maps a simplicial map f : K → L between simplicial complexes K and L to the collection

{fn,#}n∈Z of maps fn,# : Cn(K;R)→ Cn(L;R) as given by Definition 1.3.3.

If R = Z, we write C∗(−) := C∗(−;Z) for brevity.

Bringing this all together, we have the following proposition:

Proposition 1.3.8. Let K be a simplicial complex and R a PID. For all n ∈ Z:

Hn(K;R) =
(
Hn ◦ C∗(−;R)

)
(K) =

(
Hn(C∗(K;R))

)
where Hn(K;R) is the simplicial chain group of K by Definition 1.2.9, Hn : Ch-ModR → ModR is the chain

homology functor, and C∗(−;R) is the simplicial chain complex functor by Definition 1.3.7.

Proof. The object assignment by Hn(−) ◦C∗(−;R) is exactly as described in Definition 1.2.9 for Hn(K;R).

Note that this proposition disregards the morphism assignment of the relevant functors. ■

For convenience, we define the composition of the simplicial chain complex functor and the homology

functor to be the simplicial chain group functor.

page 24 of 169



Definition 1.3.9. For each n ∈ Z, define the nth simplicial homology functor Hn(−;R) : A-Simp→ModR
with coefficients in a PID R as the following composition of functors:

Hn(−;R) := Hn ◦ Cn(−;R)

where Hn : Ch-ModR → ModR refers to the chain homology functor. Given a simplicial map f : K → L, let

f∗ : Hn(K;R)→ Hn(L;R) be the map on homology induced by application of the functor Hn(−;R).

Below, we identify a result that will be useful later in Section 3.3 in the context of persistent homology.

Lemma 1.3.10. Let L be a subcomplex of some simplicial complex K and let i : L→ K be the corresponding

inclusion map. For each n ∈ Z:

i. The nth chain group Cn(L;R) of L is a submodule of Cn(K;R) and for all [σ] ∈ Cn(L;R), in,#
(
[σ]
)
=

idCn(K;R)

(
[σ]
)
= [σ] where idCn(K;R) refers to the identity map on Cn(K;R).

ii. For all [σ] ∈ Cn(L;R), ∂Ln
(
[σ]
)
= ∂Kn

(
[σ]
)
where ∂Ln : Cn(L;R) → Cn−1(L;R) refers to the boundary

map on L and ∂Kn : Cn(K;R)→ Cn−1(K;R) that on K.

Proof. Let n ∈ Z. If n < 0, then Cn(L;R) = 0, Cn(K;R) = 0, and the proposition is trivially satisfied.

Assume n ≥ 0. Since i : L → K is an inclusion map, i(σ) = idK(σ) for all n-simplices σ ∈ L. By

Proposition 1.3.4, in,# = id(Cn(K;R)) = (idK)#. By Proposition 1.3.6, for [σ] ∈ Cn(L;R):

(in,# ◦ ∂Ln )([σ]) = (∂Kn ◦ in,#)([σ]) = ∂Kn ([σ])

as desired. ■
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Chapter 2. Introduction to Persistence Theory

The study of persistence modules or persistence theory first came about in the study of persistent homology.

Herbert Edelsbrunner, David Letscher, and Afra Zomorodian in the paper Topological Persistence and Sim-

plification [ELZ02] had first defined persistence in terms of homology classes of some collection of spaces. In

particular, persistence theory is interested in the following quantity:

rank
(
Hn(Xt;R)

i∗−−→Hn(Xs;R)
)

where Xt and Xs are two topological spaces such that Xt ⊆ Xs and R is some ring. Here, the term persistence

refers to how homology classes in Hn(Xt;R) map to Hn(Xs;R) under the homomorphism i∗ induced by the

inclusion i : Xt → Xs, where we say a homology class [σ] ∈ Hn(Xt;R) persists if i∗([σ]) ̸= 0.

Persistence theory was later generalized. For example, Afra Zomorodian and Gunnar Carlsson in [ZC05]

(published in February 2005) then introduced a definition for persistence modules in terms of R-modules and

considered persistent homology to be a specific example of a persistence module. In particular, a persistence

module was defined to be a collection {Mt}t∈N0
of R-modules together with a collection of homomorphisms

{φt :Mt →Mt+1}t∈N0
. Relative to this characterization, persistence theory studies the following quantity:

rank
(
Mt

φt−−→Mt+1

)
.

However, definitions for certain constructions involving persistence modules may seem arbitrary or unmotivated

given this collection definition. For example, the direct sum between persistence modules {Mt}t∈N0
and {Nt}t∈N0

is defined to be done pointwise as follows:

{Mt}t∈N0
⊕Pers {Nt}t∈N0

:=
{
Mt ⊕Mod Nt

}
t∈N0

where ⊕Pers refers to the direct sum of persistence modules and ⊕Mod to that of R-modules. This notion of

direct sum between persistence modules is then related to that between graded R[x]-modules, without much

justification as to how the definition for ⊕Pers is consistent with the categorical definition (so as to be consistent

with that of ⊕Mod).

Later, Bubenik and Scott in the paper Categorification of Persistence Modules [BS14] (presented in May

2014) introduced a new definition for persistence modules in terms of category theory: one that covers the ideas

of Zomorodian and Carlsson, provides a more robust foundation to the theory, and is generalizable to concepts

such as zigzag persistence and multiparameter persistence. This new definition in terms of functors is often

used in the current literature for persistence theory.

In this chapter, we discuss persistence theory relative to this characterization of persistence modules as

functors, and present results involving persistence modules relevant to concepts discussed in [ZC05]. This

chapter is organized as follows:

Section 2.1. Persistence Modules as Functors.

We define persistence modules over a field F as functors of the form Poset(N0,≤)→ VectF
and introduce a type of persistence module called a finite-type persistence module.

Section 2.2. The Category of Persistence Modules.

We discuss the category PersF of persistence modules over F, defined to be the category of

functors of the form Poset(N0,≤)→ VectF, We also provide definitions for several algebraic

constructions involving persistence modules, e.g. isomorphisms, direct sums, and chain com-

plexes, arising from this characterization as a functor category and briefly discuss how these

definitions are consistent with their corresponding categorical definitions.
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Section 2.3. Interval Decompositions of Persistence Modules.

We introduce a specific type of direct sum decomposition of a persistence module called an

interval decomposition, which can be proven to be unique up to persistence isomorphism,

and discuss the notion of a persistence barcode.

Section 2.4. The Category of Graded Modules over Polynomial Rings

We discuss the category GrModR[x] of graded modules over the polynomial ring R[x] with

R a PID and review relevant definitions, terminology, and results involving these graded

modules. We also introduce graded invariant factor decompositions for graded F[x]-modules,

which correspond to invariant factor decompositions that respect the graded structure, and

present the Graded Structure Theorem.

Section 2.5. The Equivalence between Persistence Modules and Graded Modules

We present an isomorphism of categories between PersF and GrModF[x] and discuss how

interval decompositions of persistence modules over F correspond to graded invariant factor

decompositions of graded F[x]-modules. We also talk about the correspondence between the

algebraic constructions in PersF and those of GrModF[x] resulting from this isomorphism of

categories.

The majority of the definitions and results we present below involving persistence modules are taken or adapted

from the following papers, listed in increasing order of their initial publication dates:

1. The Categorification of Persistence Modules [BS14] by Bubenik and Scott.

2. The Structure and Stability of Persistence Modules [CSGO13] by Chazal, de Silva, Glisse, and Oudot.

3. The Observable Structure of Persistence Modules [CCS14] by Chazal, Crawley-Boevey, and de Silva.

4. Homological Algebra for Persistence Modules [BM21] by Bubenik and Milićević.

Note that most of the concepts in this chapter are discussed in terms of category theory. Some introductory

category theory definitions and results are presented in Appendix A4. For a more detailed treatment of cat-

egory theory, we recommend reading Category Theory in Context by Emily Riehl [Rie16] and Introduction to

Homological Algebra by Joseph Rotman [Rot08].
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Section 2.1. Persistence Modules as Functors

We start this section by providing a functor definition for persistence modules, adapted from [CCS14, Section

1.3]. For reference, Poset(N0,≤) refers to the category induced by the partially ordered set (poset) of nonneg-

ative integers N0 = {n ∈ Z : n ≥ 0} under the ≤ relation (see Definition A4.3) and VectF refers to the category

of vector spaces over a scalar field F and linear maps.

Definition 2.1.1. A persistence module (V•, α•) over a field F is a functor of the form Poset(N0,≤) →
VectF. For convenience, we may write V• to refer to (V•, α•). When the field F is arbitrary or unambiguous,

we may refer to V• as a persistence module.

We identify the following terminology for certain features of persistence modules:

i. For each t ∈ N0, define Vt := (V•, α•)(t), i.e. Vt is the vector space over F obtained by evaluating the

functor (V•, α•) on the object t of Poset(N0,≤). The vector spaces of (V•, α•) generally refer to the

collection {Vt : t ∈ N0} of vector spaces.

ii. A structure map of (V•, α•) refers to a linear map αs,t : Vt → Vs by αs,t := (V•, α•)(t → s) for

t, s ∈ N0 with t ≤ s, i.e. αs,t is obtained by evaluating the functor (V•, α•) on the morphism t → s of

Poset(N0,≤). For brevity, we may write αt : Vt → Vt+1 to refer to αt := αt+1,t = V•(t→ t+ 1).

iii. We call Poset(N0,≤) the indexing category of V• and N0 the indexing set of V•. We may also refer

to the index t ∈ N0 as the parameter or scale of the vector space Vt in the persistence module V•.

Remarks. (1) The location of the bullet (•) in (V•, α•) determine the location of the indices of the vector

spaces and structure maps in the notation, e.g. if (W •, γ•) were a persistence module, we denote

its vector spaces as W t and its structure maps by γs,t : W t → W s. Unlike in the case of chain

complexes and cochain complexes, we use the same definition for persistence modules regardless

of the location of the bullet (•) (i.e. as a subscript or superscript).

(2) In this expository paper, we use an asterisk (∗) as the “placeholder” for the index n ∈ Z for

a chain complex C∗ = (Cn, ∂n)n∈Z, following [Rot88], and we reserve the use of bullets (•)
for persistence modules. This distinction will be important after Definition 2.2.10, where we

introduce chain complexes of persistence modules.

(3) For the case of structure maps, the indices t, s ∈ N0 of αs,t are written in right-to-left order,

following the notation for function composition, so that compositions of structure maps are

written like αs,r ◦ αr,t = αs,t (with equality given later by Lemma 2.1.3). Note that, in this

paper, when we say αs,t is a structure map, then it is implied that t, s ∈ N0 and t ≤ s.

We would like to point out that the definition given in [CCS14, Section 1.3] applies to a more general family

of persistence modules since it allows for different indexing categories for the domain category Poset(I,≤) and
different categories such as ModR for the codomain category. That is, a persistence module V• is defined as

a functor V• : Poset(I,≤) → ModR where (I,≤) is some partially ordered set and R is some (commutative)

ring. Observe that if R is a field, then an R-module is an R-vector space by definition, i.e. ModF and VectF
are the same category. We bring attention to this since homology is typically introduced using Z coefficients.

Therefore, it may be natural to consider functors of the form Poset(N0,≤) → ModZ, so that we can consider

a persistence module where each index in N0 corresponds to the nth homology group with coefficients in Z of

some space for some fixed n ∈ N0. In this paper, we restrict persistence modules to codomain category VectF
since Z[x] is not a principal ideal domain (PID) but F[x] for any field F is, which allows us to use the Graded

Structure Theorem (Theorem 4.3.1) later in Section 2.5.

We would also like to emphasize that since we introduce persistence theory to discuss persistent homology

more concretely, we will primary use F = Q and F = Zp for our examples. We discuss this choice in more detail
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later in Remark 3.2.4 under Section 3.2. Below, we provide an example of a persistence module over Q.

Example 2.1.2. Let (A•, α•) be a persistence module over Q with the vector spaces At given as follows:

At =


Q⟨a1, a2⟩ if t = 0

Q⟨b⟩ if t = 1

Q⟨c1, c2, c3⟩ if t = 2

Q⟨d⟩ if t ≥ 3

and the structure maps αs,t : At → As of A• are defined as follows:

α1,0 : A0 → A1

a1 7→ 2b

a2 7→ −3b

α2,0 : A0 → A2

a1 7→ 6c1 + 4c2 + 2c3

a2 7→ −9c1 − 6c2 − 3c3

α2,1 : A1 → A2

b 7→ 3c1 + 2c2 + c3

αt,1 : A1 → At with t ≥ 3

b 7→ 5d

αt,2 : A2 → A3 with t ≥ 3

c1 7→ d

c2 7→ 0

c3 7→ 2d

αt,0 : A0 → At with t ≥ 3

a1 7→ 10d

a2 7→ −15d

For all t ∈ N0, the structure map αt,t : At → At is the identity map on At. For all t, s ≥ 3, the structure map

αs,t : At → As is the identity map on At = Q⟨d⟩, i.e. d 7→ d.

Observe that the specification for the structure maps above satisfy the functorial property of composition.

By definition of Poset(N0,≤) (as given in Definition A4.3), there is exactly one morphism t→ s for any t, s ∈ N0

with t ≤ s. Therefore, the composition (t→ r) ◦ (r → s) of morphisms in Poset(N0,≤) with t ≤ r ≤ s must be

the morphism t→ s. We talk about this in more detail below in Lemma 2.1.3.

For example, any composition of structure maps resulting in a domain of A0 = Q⟨a1, a2⟩ and a codomain

of A3 = Q⟨d⟩ must exactly be the structure map α3,0 : V0 → V3 (i.e. domain, codomain, and assign-

ments/evaluation must be the same). We list some of these compositions below, evaluated on 2a1 ∈ A0.

α3,0(2a1) = 2(10d) = 20d

(α3,2 ◦ α2,0)(2a1) = α3,2(12c1 + 8c2 + 4c3) = 12d+ 8d = 20d

(α3,1 ◦ α1,0)(2a1) = α3,1(4b) = 20d

(α3,2 ◦ α2,1 ◦ α1,0)(2a1) = (α3,2 ◦ α2,1)(2b) = α3,2(6c1 + 4c2 + c3) = 12d+ 8d = 20d

(α3,0 ◦ α0,0)(2a1) = α3,0(2a1) = 20d

(α3,2 ◦ α2,2 ◦ α2,0)(2a1) = (α3,2 ◦ α2,2)(12c1 + 8c2 + 4c3) = α3,2(12c1 + 8c2 + 4c3) = 12d+ 8d = 20d

Defining persistence modules as functors is a succinct way to impose additional algebraic structure to

the construction. As mentioned in the introduction, [ZC05, Definition 3.2] defines a persistence module as a

collection of R-modules {V t} and homomorphisms {φt : Vt → Vt+1}, both indexed by t ∈ N0. Observe that the

collection definition does not explicitly state, for example, that there exists a linear map V2 → V4. While it

may be somewhat natural to assume the linear map α4,2 : V2 → V4 is given by the composition α4,2 = α3 ◦ α2,

having to state it as a separate condition can be somewhat confusing or cumbersome and can also feel arbitrary.

In comparison, by assuming that said collection corresponds to a functor, we get a number of properties as a

consequence of the functor definition. We list some below.
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Lemma 2.1.3. Let (V•, α•) be a persistence module.

i. For all t ∈ N0, the structure map αt,t : Vt → Vt is the identity map on Vt.

ii. For all t, r, s ∈ N0 with t ≤ r ≤ s, αs,t = αs,r ◦ αr,t. That is, the following diagram commutes:

iii. For all t, s ∈ N0 with t ≤ s, there is exactly one linear map Vt → Vs.

Proof. Let n ∈ N0. By definition of Poset(N0,≤), the unique morphism n → n must be the identity

morphism on n. By definition, a functor must pass V•(n→ n) to the identity map on Vn. Therefore,

the structure map V•(n→ n) = αn,n = idVn
.

Let t, s, r ∈ N0 such that t ≤ r ≤ s. By definition of Poset(N0,≤), we have the equality

(s← r) ◦ (r ← t) = (s← t) as morphisms of Poset(N0,≤). Since functors must respect composition

(indicated below by ⋆), we have

αs,t = V•(s← t) = V•
(
(s← r) ◦ (r ← t)

) ⋆
= V•(s← r) ◦ V•(r ← t) = αs,r ◦ αr,t

Claim (iii) is a re-statement of Claim (ii), wherein all linear maps with domain Vt and domain Vs
must be equal. ■

Note that Lemma 2.1.3 allows us to represent persistence modules as sequences and use sequences to refer to

a persistence module unambiguously. In particular, we can describe a persistence module V• as the following

sequence:

V0
α0−−→V1

α1−−→V2
α2−−→V3

α3−−→V4
α4−−→· · ·

with αt being the linear map αt : Vt → Vt+1 for all t ∈ N0. As a sidenote, this sequence representation applies to

any diagram with Poset(N0,≤) as the domain category. Note that we use the term diagram to refer to functors

of the form Poset(I,≤)→ C, as described in Definition A4.6.

Conversely, Lemma 2.1.3 also implies that there is enough information in the sequence (i.e. the collection

of vector spaces {Vn} and morphisms {αt : Vt → Vt+1}) to determine a persistence module V•. In particular,

for a given persistence module V•, the structure maps of the form αs,t : Vt → Vs with s ̸= t + 1 are uniquely

determined by the set of {αt}t∈N0
of linear maps. Therefore, the collection definition given in [ZC05, Definition

3.2] is compatible with the functor definition given in Definition 2.1.1. We state this as a lemma below.

Proposition 2.1.4. Let {Wt}t∈N0
and {φ :Wt →Wt+1}t∈N0

be N0-indexed collections of F-vector spaces and
linear maps respectively. Let (V•, α•) be a persistence module over F such that Vt = Wt for all t ∈ N0 and the

structure maps of (V•, α•) of the form αt : Vt → Vt+1 are given by αt = φt. Then, there is exactly one choice

for the remaining structure maps of (V•, α•), as listed below:

i. For all t ∈ N0, the structure map αt,t : Vt → Vt must be the identity map idVt : Vt → Vt of Vt.

ii. For all t ∈ N0 and k ≥ 2, the structure map αt+k,t : Vt → Vt+k is given by the following composition:

αs,t = αs−1 ◦ αs−2 ◦ · · · ◦ αt+1 ◦ αt

That is, the pair of collections {Wt} and {φt} unambiguously determines a persistence module (W•, φ•).

Proof. This follows immediately from the definition of Poset(N0,≤) and that of functors. The proof is
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similar to that of Lemma 2.1.3. ■

Note that by Lemma 2.1.3 and Proposition 2.1.4, we get a correspondence between the set of persistence modules

(V•, α•) and the set of pairs of collections ({Vt}, {αt : Vt → Vt+1}). For convenience, we often define persistence

modules using Proposition 2.1.4. As an example, we describe the persistence module (A•, α•) given in Example

2.1.2 using a collection of vector spaces and of linear maps. We also describe the sequence corresponding to

(A•, α•).

Example 2.1.5. Let (B•, β•) be a persistence module over Q with vector spaces Bt given as follows:

Bt =


Q⟨a1, a2⟩ if t = 0

Q⟨b⟩ if t = 1

Q⟨c1, c2, c3⟩ if t = 2

Q⟨d⟩ if t ≥ 3

Let the structure maps βt : Bt → Bt+1 of B• be as given below:

β0 : B0 → B1

a1 7→ 2b

a2 7→ −3b

β1 : B1 → B2

b 7→ 3c1 + 2c2 + c3

β2 : B2 → B3

c1 7→ d

c2 7→ 0

c3 7→ 2d

βt : Bt → Bt+1 for t ≥ 3

d 7→ d

Use Proposition 2.1.4 to define the remaining structure maps of B•. Then, B• = A• (as functors) where A•
is the persistence module defined in Example 2.1.2. Observe that the specification for B• is much shorter that

that for A•. Also, A• corresponds to the following sequence:

A0

=

Q⟨a1, a2⟩
α0−−−→

A1

=

Q⟨b⟩
α1−−−→

A2

=

Q⟨c1, c2, c3⟩
α2−−−→

A3

=

Q⟨d⟩
α3−−−→

A4

=

Q⟨d⟩
α4−−−→· · ·

Observe that Definition 2.1.1 allows for persistence modules that have non-finite characteristics. For

example, some of the vector spaces Vt of a persistence module V• may be infinite-dimensional. We can also have

a persistence module (W•, γ•) wherein none of the structure maps γt :Wt →Wt+1 are isomorphisms or can be

made into isomorphisms by a change of basis onWt. In this case, we are considering an infinite number of vector

spaces. Persistence modules of this nature do present some problems. Indeed, the results presented in [ZC05]

only consider a specific type of persistence module, one that is finite in specific ways. We use a definition of

such, adapted from [ZC05, Definition 3.3].

Definition 2.1.6. A persistence module (V•, α•) is constant on an interval I ⊆ N0 if for all t, s ∈ I with

t ≤ s, the structure map αs,t : Vt → Vs is a vector space isomorphism. A persistence module V• is called

finite-type if all of its vector spaces Vt are finite-dimensional and V• is constant on [N,∞) for some N ∈ N0.

Remark. Since persistence theory is a relatively new field, there exist terms that are commonly used in the

literature but are defined differently depending on the author(s). The term finite-type is one of these.

Later in Proposition 2.5.14, using the definition above for finite-type, we state that interval

decompositions (defined in Definition 2.3.4) exist for finite-type persistence modules. In contrast,

[BS14, Definition 4.1] and [CSGO13] define the term finite-type to refer to persistence modules
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for which an interval decomposition exists. The term tame in [BS14] serves the same function as

finite-type in [ZC05], i.e. it serves as a characterization of persistence modules that have interval

decompositions. However, the term tame also has its problems, as discussed in [CSGO13, p5].

All of the examples we will present in this expository involve finite-type persistence modules (not including

the one example given below for comparison). As we will discuss in Section 3.2, under the assumption that

the simplicial complex in question is finite, the persistence modules generated by said simplicial complex will

necessarily be of finite-type. This assumption is justified since most practical applications of persistent homology,

particularly those involving calculation, have simplicial complexes generated from finite datasets. The usual

construction involves letting the dataset V be the vertex set of the to-be constructed simplicial complex K.

Since K is a subset of the power set 2V and power sets of finite sets are finite, K must also be finite. This

explains why some of the introductory literature on persistent homology describe persistence modules as finite

sequences, i.e. persistence modules are described to be finite sequences as given below:

V0
α0−−→V1

α1−−→V2
α2−−→· · ·

αN−1−−−−→VN

Using our definition, we would interpret the sequence above to correspond to a persistence module V• that is

constant on [N,∞) and assume that Vn = VN for all n ∈ [N +1,∞). As an example, we look at the persistence

module given earlier in Example 2.1.2.

Example 2.1.7. Let (A•, α•) be as defined in Example 2.1.2. Then, A• is a finite-type persistence module and

is constant on [3,∞). Also, A• corresponds to the following sequence:

A0

=

Q⟨a1, a2⟩
α0−−→

A1

=

Q⟨b⟩
α1−−→

A2

=

Q⟨c1, c2, c3⟩
α2−−→

A3

=
Q⟨d⟩

For comparison, we provide an example below of a persistence module that is not finite-type.

Example 2.1.8. Let A = {an}n∈N0
be a set of indeterminates. Define the persistence module (F•, η•) over Q

using Proposition 2.1.4 as follows:

1. For each t ∈ N0, Ft := Q⟨a0, a1, . . . , at⟩.

2. For each t ∈ N0, define the structure map ηt : Ft → Ft+1 by ηt(ai) = ai for all i ∈ {0, . . . , t}.

Then, the following sequence represents the persistence module (F•, η•):

F0

=

Q⟨a0⟩
η0−−−−−−→

a0 7→ a0

F1

=

Q⟨a0, a1⟩
η1−−−−−−−−−−−→

ai 7→ ai, i = 0, 1

F2

=

Q⟨a0, a1, a2⟩
η2−−−−−−−−−−−−−→

ai 7→ ai, i = 0, 1, 2

F3

=

Q⟨a0, a1, a2, a3⟩
η3−−→· · ·

While all vector spaces Ft are finite-dimensional, V• fails to be constant on the interval [N,∞) for any N ∈ N0.

We identify two ways we can see this:

1. For all t ∈ N0, ηt : Ft → Ft+1 cannot be an isomorphism since η−1
t ({at+1}) = ∅, i.e. ηt is not surjective.

2. Any two vector spaces Ft and Fs of V• with t ̸= s cannot be isomorphic since dim(Ft) = t+1 ̸= s+1 =

dim(Fs).

Therefore, F• is not a finite-type persistence module.
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Section 2.2. The Category of Persistence Modules

One of the key goals of persistence theory is to characterize persistence modules that admit a special decom-

position called an interval decomposition. Note that we use the term (direct sum) decomposition to refer to an

isomorphism to a direct sum, similar to the case of vector spaces, modules, and of chain complexes. However,

to understand decompositions, we first need to define the notions of isomorphisms and of direct sums between

persistence modules.

In persistence theory, these algebraic constructions are defined by forming the category PersF of persistence

modules over F as a functor category with natural transformations as morphisms. Below, we provide definitions

specific for the category of persistence modules, adapted from [CCS14, Definition 1.3].

Definition 2.2.1. The category PersF of persistence modules over a field F is the category of functors

of the form Poset(N0,≤)→ VectF and natural transformations, i.e. PersF consists of the following:

i. The objects in PersF are persistence modules over F, as given in Definition 2.1.1.

ii. The morphisms in PersF are persistence morphisms, defined as follows:

A persistence morphism φ• : (V•, α•)→ (W•, γ•) between persistence modules (V•, α•) and (W•, γ•)

over F is a collection of linear maps φ• = (φt : Vt → Wt)t∈N0
such that for all t, s ∈ N0 with t ≤ s, the

composition relation γs,t ◦ φt = φs ◦ αs,t is satisfied, i.e. the following diagram commutes:

Vt Vs

Wt Ws

αs,t

φt φs
γs,t

Remarks. (1) In this paper, writing the symbol φ• to represent a persistence morphism determines that φt
refers to the corresponding linear map φt : Vt → Wt for each t ∈ N0, i.e. the bullet (•) in φ• is

replaced by the index t ∈ N0, much like in the case of persistence modules as remarked under

Definition 2.1.1.

(2) By [Rie16, Section 1.7, p44] and [Rot08, Example 1.19(i), p27], for any two categories C and

D, there exists a category denoted DC consisting of functors of the form C→ D as objects and

natural transformations between functors. This category is called a functor category. We use

this result for the claim of PersF being a well-defined category.

As a sidenote, [BS14] denotes PersF as Vect
(N0,≤)
F where (N0,≤) refers to the poset category

Poset(N0,≤) (see remarks under Definition A4.3 for the notation of poset categories).

We provide an example of a persistence morphism below. Note that not all collections of linear maps

{φt : Vt →Wt}t∈N0
produce a persistence morphism φ• : V• → W•. We need to check that the composition

relation, i.e. the commuting squares and diagrams, is satisfied.

Example 2.2.2. Let (V•, α•) and (W•, γ•) be persistence modules over Q with the following Q-vector spaces

defined over indeterminates A,B,C for Vt and a, b, c for Wt:

Vt =


0 if t = 0

Q⟨A⟩ if t = 1

Q⟨A,B⟩ if t = 2

Q⟨A,B,C⟩ if t ≥ 3

and Wt =

{
Q⟨a, b⟩ if t = 0

Q⟨a, b, c⟩ if t ≥ 1
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The structure maps αt : Vt → Vt+1 of V• and γt : Wt → Wt+1 of W• are determined by the identity maps on

Q⟨A,B,C⟩ and on Q⟨a, b, c⟩ respectively, i.e. αt(X) = idQ⟨A,B,C⟩(X) for all X ∈ Vt and γt(x) = idQ⟨a,b,c⟩(x) for

all x ∈Wt.

Define a family {φt}t∈N0
of linear maps φt : Vt → Wt as follows: Let Φ : Q⟨A,B,C⟩ → Q⟨a, b, c⟩ be given

by A 7→ b− a, B 7→ a− c, and C 7→ c− b. Define φt : Vt → Wt by φt(X) := Φ(X) for all X ∈ Vt, i.e. we have

the following assignments for φt:
φt(A) = b− a for t ≥ 1

φt(B) = a− c for t ≥ 2

φt(C) = c− b for t ≥ 3

Note that φ0 : V0 → W0 is necessarily the trivial map since the domain V0 is the trivial vector space. We can

confirm that the family {φt}t∈N0
satisfies the commutativity requirement as follows: for all X ∈ Vt with t ≥ 1:

(φs ◦ αs,t)(X) =
(
Φ ◦ idQ⟨A,B,C⟩

)
(X) = Φ(X) =

(
idQ⟨a,b,c⟩ ◦ Φ

)
(X) = (γs,t ◦ φt)(X)

This is illustrated in the diagram below:

(t=0) (t=1) (t=2) (t=3)

(V•, α•) : 0 Q⟨A⟩ Q⟨A,B⟩ Q⟨A,B,C⟩ · · ·

(W•, γ•) : Q⟨a, b⟩ Q⟨a, b, c⟩ Q⟨a, b, c⟩ Q⟨a, b, c⟩ · · ·

α0

φ0

α1

φ1 A 7→ b−a

α2

φ2
A 7→ b−a
B 7→ a−c

α3

φ3
A 7→ b−a
B 7→ a−c
C 7→ c−b

γ0 γ1 γ2 γ3

Therefore, the set {φt}t∈N0
determines a persistence morphism φ• : (V•, α•)→ (W•, γ•).

Observe that, given two persistence morphisms φ• : (A•, α•) → (B•, β•) and ψ• : (B•, β•) → (C•, γ•)

between persistence modules (A•, α•), (B•, β•), and (C•, γ•), the collection of compositions {ψt ◦ φt}t∈N0
also

determines a persistence morphism ψ• ◦ φ• : A• → C•. Relative to the commuting squares, the squares of φ•
and ψ• together produce the squares for the composition, as illustrated below:(

commuting square of

φ• : (A•,α•)→(B•,β•)

) (
commuting square of

ψ• : (B•,β•)→(C•,γ•)

) (
commuting square for

the composition ψ•◦φ•

)
At As

Bt Bs

αs,t

φt # φs

βs,t

with

Bt Bs

Ct Cs

βs,t

ψt # ψs

γs,t

implies

At As

Ct Cs

αs,t

ψt ◦ φs # ψs ◦ φs

γs,t

Therefore, the composition ψ• ◦ φ• : (A•, α•) → (C•, γ•) of persistence morphisms is also a persistence mor-

phism. Note that this is part of the proof of PersF being a well-defined category.

Since the category PersF of persistence modules is defined to be a functor category of functors of the

form Poset(N0,≤)→ VectF, there is a natural extension of the algebraic constructions in VectF to the case of

PersF. In particular, we can define constructions in PersF by pointwise evaluation for each t ∈ N0 using the

corresponding constructions in VectF. Note that we need to be careful here since the constructions in PersF
have to respect the structure of the morphisms. We discuss this in more detail for the following constructions

in PersF: isomorphism relations, direct sum operations, subobject relations, kernel, image, and cokernel of

morphisms, and chain complexes.

We want to point out that this extension process (for lack of a better term) is not unique to persistence
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modules. More generally, this seems to be a common property of functor categories with functors of the form

Poset(I,≤) → A where A is some abelian category. Note that ModR over a PID R and VectF over a field

F are examples of abelian categories. Abelian categories are outside the scope of this paper but for those

interested, this is discussed in more detail in [Rot08, Section 5.5: Proposition 5.93 and Corollary 5.94] and in

[Wei95, Appendix A.4]. This might explain why most of the literature we have read on persistence theory do

not explicitly describe these constructions, e.g. [CCS14; BM21] wherein a reference to PersF being an abelian

or Grothendieck category seems to suffice.

Note that an equality between persistence modules in PersF corresponds to an equality between functors.

That is, two persistence modules (V•, α•) and (W•, γ•) are equal if Vt = Wt as F-vector spaces for all t ∈ N0

and αs,t = γs,t as linear maps for all t, s ∈ N0 with t ≤ s. We start with a definition for isomorphisms between

persistence modules.

Definition 2.2.3. A persistence isomorphism φ• : V• → W• between persistence modules (V•, α•) and

(W•, γ•) over F is a persistence morphism φ• : V• →W• with φ• = (φt : Vt →Wt)t∈N0
such that for all t ∈ N0,

the linear map φt : Vt →Wt is an F-vector space isomorphism. If such a persistence isomorphism exists, we say

that V• and W• are isomorphic (as persistence modules) and write V• ∼=W•.

Remark. If needed, we may write
Pers∼= instead of ∼= to emphasize that the isomorphism relation is of the category

PersF. We use this notation sometimes in Chapter 4 where we talk about isomorphisms between R-

modules, between graded F[x]-modules, and between persistence modules in the same context.

We want to emphasize that a persistence isomorphism has to be given by a persistence morphism and that

the structure maps of the persistence modules cannot be ignored. That is, given two persistence modules (V•, α•)

and (W•, γ•), a collection {φt}t∈N0
of F-vector space isomorphisms φt : Vt → Wt generally does not make a

persistence isomorphism. Below, we provide an example of a collection {φt}t∈N0
of vector spaces isomorphisms

that is not a persistence morphism, and another collection {ψt}t∈N0
that is a persistence isomorphism.

Example 2.2.4. Define the persistence modules (V•, α•) and (W•, γ•) over Q as follows: For all t ∈ N0, define

Vt := Q⟨a, b⟩ and Wt := Q⟨x, y⟩ with indeterminates a, b, x, and y. For t = 0, define the structure map

α0 : V0 → V1 by α0(a) := a + b and α0(b) := b. For t ≥ 1, let αt : Vt → Vt+1 be the identity map on Q⟨a, b⟩.
For all t ∈ N0, let γt :Wt →Wt+1 be the identity map on Q⟨x, y⟩.

Part (a). For each t ∈ N0, let φt : Vt → Wt be given by a 7→ x and b 7→ y. Since Vt = Q⟨a, b⟩ and
Wt = Q⟨x, y⟩ for all t ∈ N0, each φt is a vector space isomorphism with obvious inverse. However,

the collection {φt}t∈N0
is not a persistence morphism since

x+ y =
(
φ1 ◦ α0

)
(a) =

(
φ1 ◦ α1,0

)
(a) ̸=

(
γ1,0 ◦ φ0

)
(a) =

(
γ0 ◦ φ0

)
(a) = x

That is, the following diagram does not commute:

V0 = Q⟨a, b⟩ Q⟨a, b⟩ = V1

W0 = Q⟨x, y⟩ Q⟨x, y⟩ =W1

α1,0

a 7→ a+b, b 7→ b

φ0
a 7→ x
b 7→ y

φ1
a 7→ x
b 7→ y

γ1,0

x 7→ x, y 7→ y

Therefore, {φt}t∈N0
is not a persistence isomorphism.

Part (b). It turns out that there exists a persistence isomorphism between (V•, α•) and (W•, γ•). This

becomes clearer if we perform a change of basis on Vt and Wt for t ∈ N0. Observe that Q⟨a, b⟩ =
Q⟨c, b⟩ with c := a+ b, i.e. {c, b} is a basis of Q⟨a, b⟩. Then, we can express the persistence module
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(V•, α•) as follows. Note that αt = idQ⟨a,b⟩ for t ≥ 1.

(t=0) (t=1) (t=2) (t=3)

(V•, α•) : Q⟨a, b⟩ Q⟨c, b⟩ Q⟨c, b⟩ Q⟨c, b⟩ · · ·
α0

a 7→ a+b=: c
b 7→ b

α1

c 7→ c
b 7→ b

α2

c 7→ c
b 7→ b

Similarly, observe that Q⟨x, y⟩ = Q⟨z, y⟩ with z := x + y, i.e. {z, y} is a basis for Q⟨x, y⟩. We

apply this change of basis on Wt for all t ∈ N0. Since γt = idQ⟨x,y⟩ for all t ∈ N0, the persistence

module (W•, γ•) can be illustrated as follows:

(t=0) (t=1) (t=2) (t=3)

(W•, γ•) : Q⟨z, y⟩ Q⟨z, y⟩ Q⟨z, y⟩ Q⟨z, y⟩ · · ·
γ0
z 7→ z
y 7→ y

γ1
z 7→ z
y 7→ y

γ2
z 7→ z
y 7→ y

For t = 0, define ψ0 : V0 →W0 by a 7→ z and b 7→ y. For t ≥ 1, define ψt : Vt →Wt by c 7→ z and

b 7→ y. We claim that ψ• = {ψt}t∈N0
determines a persistence morphism ψ• : (V•, α•)→ (W•, γ•)

since these two diagrams commute (with t ≥ 1 for the diagram on the right hand side):

V0 = Q⟨a, b⟩ Q⟨c, b⟩ = V1

W0 = Q⟨z, y⟩ Q⟨z, y⟩ =W1

α1,0

a 7→ c, b 7→ b

ψ0
a 7→ z
b 7→ y ψ1

c 7→ z
b 7→ y

γ1,0

z 7→ z, y 7→ y

and

Vt = Q⟨c, b⟩ Q⟨c, b⟩ = Vt+1

Wt = Q⟨z, y⟩ Q⟨z, y⟩ =Wt+1

αt

(identity)

ψt(identity) ψt+1 (identity)

γt

(identity)

Observe that, unlike the case for {φt}t∈N0
, ψ1 ◦ α0 and γ0 ◦ ψ0 agree at a ∈ V0 for {ψt}t∈N0

:(
ψ1 ◦ α0

)
(a) = ψ1(c) = z = γ0(z) =

(
γ0 ◦ ψ0

)
(a)

Therefore, ψ• = {ψt}t∈N0
is a persistence morphism ψ• : V• → W•. Since each linear map

ψt : Vt →Wt is a linear isomorphism, ψ• is a persistence isomorphism and (V•, α•) ∼= (W•, γ•).

Next, we provide a characterization of the direct sum of persistence modules.

Definition 2.2.5. The direct sum (V•, α•) ⊕ (W•, β•) =: (U•, γ•) of two persistence modules (V•, α•) and

(W•, β•) over a field F is the persistence module over F with vector spaces given by Ut := Vt ⊕Wt (i.e. a direct

sum of vector spaces) for all t ∈ N0 and structure maps γs,t = αs,t⊕ βs,t (i.e. the unique linear map induced by

the direct sum) for all t, s ∈ N0 with t ≤ s, i.e.

γs,t : Ut := Vt ⊕Wt → Vs ⊕Ws =: Us

(vt, wt) 7→
(
αs,t(vt), βs,t(wt)

)

Observe that this definition extends to finite direct sums of persistence modules. Since direct sums of

persistence modules are given by those of vector spaces, properties of the direct sum of vector spaces extend to

the case of persistence modules. We identify some of these below:

1. Direct sums of persistence modules are commutative, i.e. (V•, α•)⊕ (W•, β•) ∼= (W•, β•)⊕ (V•, α•).
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2. Finite direct sums of persistence modules are associative, i.e.(
(V•, α•)⊕ (W•, β•)

)
⊕ (U•, γ•) ∼= (V•, α•)⊕

(
(W•, β•)⊕ (U•, γ•)

)
Therefore, a statement such as V• ⊕W• ⊕ U• is unambiguous (up to persistence isomorphism).

3. The zero persistence module 0• with trivial vector spaces and trivial structure maps is the identity of

the direct sum operation in PersF, i.e. for any persistence module (V•, α•), (V•, α•)⊕ 0• ∼= (V•, α•).

4. The distinction between internal direct sums and external direct sums of vector spaces also extend to

the case of persistence modules, That is, there is no difference between the two constructions up to

vector space isomorphism when there are a finite number of non-trivial summands:

(a) An internal direct sum A = A1⊕A2 on a vector space A is defined if A1 and A2 are both subspaces

of A and that A1 ∩ A2 = {0}. Here, the elements of A are generally not of the form (a1, a2) with

a1 ∈ A1 and a2 ∈ A2. For example, A = R2, A1 = span{(1, 1)}, and A2 = span{(1,−1)}.

(b) An external direct sum A := A1⊕A2 of vector spaces A1 and A2 refers to direct/Cartesian product

A1 ×A2 with a vector space structure induced by those of A1 and of A2. Here, the spaces A1 and

A2 are interpreted to be distinct vector spaces and the element of A are exactly of the form (a1, a2)

with a1 ∈ A1 and a2 ∈ A2. Note that the direct sum and the direct product of a finite collection

of vector spaces produce isomorphic vector spaces.

For the case of persistence modules, the collection of vector space isomorphisms between these two

constructions for each index t ∈ N0 forms a persistence isomorphism.

In this paper, we prefer to interpret direct sums as internal direct sums if possible and avoid

denoting the elements of the direct sum as tuples.

We provide an example of a direct sum of two persistence modules below.

Example 2.2.6. Let the persistence modules (A•, α•) and (B•, β•) over Z2 be given as follows, with indeter-

minates ai for each i ∈ {1, 2, 3} and bj for each j ∈ {1, 2, 3}:

At =


Z2⟨a1, a2⟩ if t = 0

Z2⟨a1, a2, a3⟩ if t = 1

Z2⟨a2, a3⟩ if t ≥ 2

with


α0 : A0 → A1 by a1 7→ a1, a2 7→ a2
α1 : A1 → A2 by a1 7→ 0, a2 7→ a2, a3 7→ a3
αt : At → At+1 by a2 7→ a2, a3 7→ a3 for t ≥ 2



Bt =


Z2⟨b1⟩ if t = 0

Z2⟨b1, b2⟩ if t = 1

Z2⟨b1, b2, b3⟩ if t ≥ 2

with


β0 : B0 → B1 by b1 7→ b1
β1 : B1 → B2 by b1 7→ b1, b2 7→ b2
βt : Bt → Bt+1 by b1 7→ b1, b2 7→ b2 b3 7→ b3 for t ≥ 2


These are illustrated below:

page 37 of 169



Let (Y•, γ•) := (A•, α•)⊕ (B•, β•). The vector spaces Yt of (Y•, γ•) are given as follows:

Yt =


Z2⟨a1, a2⟩ ⊕ Z2⟨b1⟩ ∼= Z2⟨a1, a2, b1⟩ if t = 0

Z2⟨a1, a2, a3⟩ ⊕ Z2⟨b1, b2⟩ ∼= Z2⟨a1, a2, a3, b1, b2⟩ if t = 1

Z2⟨a2, a3⟩ ⊕ Z2⟨b1, b2, b3⟩ ∼= Z2⟨a2, a3, b1, b2, b3⟩ if t ≥ 2

Observe that the isomorphism relations above are valid since ai’s and bj ’s are defined to be indeterminates and

that Z2⟨a1, a2, a3⟩ ∩ Z2⟨b1, b2, b3⟩ = {0}.

The structure maps γt : Yt → Yt+1 can be described by collecting the assignments of αt on the basis elements

a1, a2, a3 and those of βt on b1, b2, b3 (whichever is included in the direct sum). For example, γ1 : Y1 → Y1 has

the following assignments:

γ1 : Y1 → Y2 is given by

{
a1 7→ 0, a2 7→ a2, a3 7→ a3,

b1 7→ b1, b2 7→ b2,

}

Since αt = idA2 and βt = idB2 for all t ≥ 2, (A•, α•) and (B•, β•) are both constant on [2,∞) and the same

applies to the direct sum (Y•, γ•).

For an arbitrary category C, the terms subobject, kernel, cokernel, and image are generally defined to be

morphisms of C satisfying certain properties (as opposed to objects). For an arbitrary category C, a subobject

of an object x in C refers to an injective morphism y↣ x with codomain x [Rie16, Definition 4.6.8]. For some of

the categories that are more accessible to the introductory learner, subobjects y↣ x of an object x (assuming

the morphism agrees with the identity idx : x → x, i.e. y ↪→ x) are characterized by the domain y and are

labeled using a term specific to the category. We list some examples below.

1. In the category VectF of vector spaces over a field F, subobjects correspond to (vector) subspaces and

each vector subspace W of a vector space V has a corresponding inclusion map W ↪→ V . Since W

has to be a vector space (i.e. an object of VectF), the inclusion W ↪→ V must be a linear map, i.e. a

morphism in VectF.

2. In the category A-Simp of (abstract) simplicial complexes and simplicial maps (as given in Definition

1.3.2), subobjects coincide with (simplicial) subcomplexes. Given a subcomplex L of a simplicial complex

K, the set-wise inclusion map L ↪→ K is also a simplicial map (as described in Definition 1.1.3).

3. In the category Top of topological spaces, subobjects are (topological) subspaces. Given any subset Y

of a topological space X, Y can be equipped with the subspace topology of X. The set-wise inclusion

map Y ↪→ X is then made a continuous map relative to this topology on Y .

Below, we provide a corresponding definition for subobjects on the category PersF of persistence modules.

Definition 2.2.7. Fix a field F. Let (V•, α•) be a persistence module over a field F. A persistence module

(W•, γ•) over F is called a persistence submodule or submodule of (V•, α•) if the following are true:

i. Wt is a vector subspace of Vt for all t ∈ N0.

ii. The structure maps γs,t : Wt → Ws of (W•, γ•) are exactly the structure maps of αs,t : Vt → Vs of

(W•, γ•) with domain and codomain restricted to Wt and Ws respectively.

That is, the collection {it}t∈N0
of inclusion maps it :Wt ↪→ Vt forms a persistence morphism (W•, γ•) ↪→ (V•, α•).

In this case, we write (W•, γ•) ⊆ (V•, α•) (or W• ⊆ V• for convenience).

This definition of subobjects for persistence modules allows characterizations of kernels, cokernels, and
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images of persistence morphisms like those of linear maps in VectF, i.e. as objects in the category as opposed

to morphisms. In particular, we extend the set-wise definition of kernels, images, and cokernels in VectF to

the case of PersF. The composition relation on the structure maps of persistence modules (i.e. the commuting

squares condition) guarantee that the resulting collection of vector subspaces form a persistence submodule.

We state this in more detail below.

Definition 2.2.8. Let φ• : (V•, α•) → (W•, γ•) be a persistence morphism between two persistence modules

(V•, α•) and (W•, γ•) over a field F with φ• = {φt : Vt →Wt}t∈N0
.

i. The kernel ker(φ•) =: (K•, κ•) of φ• is the submodule of (V•, α•) with Kt = ker(φt) ⊆ Vt for all

t ∈ N0.

ii. The image im(φ•) =: (B•, β•) of φ• is the submodule of (W•, γ•) with Bt = im(φt) ⊆Wt for all t ∈ N0.

iii. The cokernel coker(φ•) =: (C•, λ•) of φ• is the persistence module with vector spaces given by Ct :=

coker(φt) =Wt / im(φt) for all t ∈ N0 and structure maps λs,t : Ct → Cs being the linear maps induced

by γs,t :Wt →Ws and the cokernel/quotient construction on VectF, i.e. ηs,t maps [w]→ [γs,t(w)] with

w ∈Wt, for all t, s ∈ N0 with t ≤ s.

Remark. The symbols K, B, and C for the kernel, image, and cokernel respectively are used here for conve-

nience, i.e. we do not typically use these letters for the kernel, image, and cokernel respectively.

Observe that the vector spaces for the kernel, image, and cokernel of persistence morphisms are all well-

defined since the kernel, image, and cokernel of linear maps are well-defined. For the kernel and image, the

question is whether the resulting structure maps by Definition 2.2.7 as persistence submodules are well-defined.

We can show this using a diagram chase using a diagram chase on the commuting squares of (V•, α•) and

(W•, γ•) on the indices t and s, as illustrated below.

The diagram chase on the left implies that αs,t
(
ker(φt)

)
⊆ ker(φs) ⊆ Vs and that the restriction of the domain

Vt to ker(φt) and the codomain Vs to ker(φs) of the structure map αs,t : Vt → Vs is well-defined.

The diagram chase on the right implies that γs,t
(
im(φt)

)
⊆ im(φs) ⊆Ws. This tells us that the restriction

of the domain and codomain of the structure map γs,t : Wt → Ws to im(φt) and im(φs) respectively is well-

defined. This also tells us that the structure maps of coker(φ•) are well-defined since

γs,t
(
w + im(φt)

)
= γs,t(w) + im(φs) ∈Ws

and that, for any coset representative w ∈ im(φt) of the trivial element [w] = 0 ∈ Wt / im(φt), λs,t([w]) =

[γs,t(w)] = 0 ∈Ws / im(φs).

We provide an example below where the kernel, image, and cokernel of a persistence morphism are identified.
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Example 2.2.9. Let (A•, α•) and (X•, χ•) be persistence modules over Q with vector spaces An and Xn

defined as follows:

At =


Q⟨a⟩ if t = 0

Q⟨a, b⟩ if t = 1

Q⟨a, b, c, d⟩ if t ≥ 2

and Xt =


Q⟨x, y⟩ if t = 0, 1

Q⟨x, y, z⟩ if t = 2

Q⟨x, y, z, w⟩ if t ≥ 3

where the structure maps αs,t : At → As of A• and χs,t : Xt → Xs of X• are restrictions of the identity maps

on Q⟨a, b, c, d⟩ and Q⟨x, y, z, w⟩ respectively. Define the map Φ : Q⟨a, b, c, d⟩ → Q⟨x, y, z, w⟩ by

[Φ] =

a b c d

x 1 −1 1 0

y 0 0 1 1

z 0 0 1 1

w 0 0 0 0


 or equivalently


a 7→ x

b 7→ −x
c 7→ x+ y+ z

d 7→ y+ z

For each t ∈ N0, define φt : At → Xt by φt(f) = Φ(f) for all f ∈ At. Observe that the codomains of φt with

t = 0, 1, 2, 3 are well-defined. We claim that φ• = {φt}t∈N0
is a persistence morphism φ• : (A•, α•)→ (X•, χ•).

The vector spaces of the persistence module ker(φ•) by ker(φ•)(t) := ker(φt) and of the persistence module

im(φ•) by im(φ•)(t) := im(φt) are as follows:

ker(φt) =


0 if t = 0

Q⟨a+ b⟩ if t = 1

Q⟨a+ b, a− c+ d⟩ if t ≥ 2

and im(φt) =

{
Q⟨x⟩ if t = 0, 1

Q⟨x, y + z⟩ if t ≥ 2

Since the vector subspace relations At ⊆ As and Xt → Xs for t ≤ s are preserved by φt and φs, the structure

maps ker(φ•)(t → s) and im(φ•)(t → s), which are inclusion maps as restrictions of identity maps, are both

well-defined. Observe that ker(φ•) is a persistence submodule of (A•, α•) and im(φ•) is a persistence submodule

of (X•, χ•).

The vector spaces of coker(φ•) by coker(φ•)(t) = coker(φt) can be described as follows:

coker(φt) =
Xt

im(φt)
=


Q⟨x, y⟩/Q⟨x⟩ ∼= Q⟨[y]⟩ ∼= Q if t = 0

Q⟨x, y⟩/Q⟨x⟩ ∼= Q⟨[y]⟩ ∼= Q if t = 1

Q⟨x, y, z⟩/Q⟨x, y + z⟩ ∼= Q⟨[z]⟩ ∼= Q if t = 2

Q⟨x, y, z, w⟩/Q⟨x, y + z⟩ ∼= Q⟨[z], [w]⟩ ∼= Q2 if t ≥ 3

Since vector spaces have no torsion, the ranks of the coker(φt) for all t ∈ N0 is determined by the rank of Xt

minus the rank of im(φt). The structure maps of coker(φ•) are illustrated by the following sequence:

coker(φ0) coker(φ1) coker(φ2) coker(φ3)

Q⟨[y]⟩ Q⟨[y]⟩ Q⟨z⟩ Q⟨z, w⟩ · · ·
[y] 7→ [y] [y] 7→ 0

[y] becomes trivial
on addition of y + z

to im(φ1)

[z] 7→ [z]

[z] is unaffected
by addition of w

to X3

structure maps
are identity maps

for t ≥ 3

Note that defining the cokernel of morphisms in an abelian category defines the quotient operation on said

category. For example, in the category of ModR of modules over a PID R, the quotient module X / Y of an
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R-module X by its submodule Y is exactly the cokernel of the inclusion map Y ↪→ X, i.e.

X
/
Y = X

/
im(Y ↪→ X) = coker(Y ↪→ X)

Consequently, Definition 2.2.8 also tells us that the quotient operation on a persistence module by its submodule

is done pointwise for each t ∈ N0. Since we have definitions for persistence submodule relations and quotients

of persistence modules, we can form chain complexes of persistence modules.

More generally, given any abelian category A, there is a corresponding category Ch-A of chain complexes

in A, defined very similarly as in the case of chain complexes of R-modules. For those interested, we refer to

[Rot08, Section 5.5] and [Wei95, Chapter 1] for a more general and detailed discussion. We state what this

means specifically for PersF below.

Definition 2.2.10. The category of persistence complexes over a field F, denoted Ch-PersF, refers to

the category of chain complexes on PersF, with objects and morphism described below:

i. The objects of Ch-PersF are persistence complexes, defined as follows:

A persistence complex (V •
∗ , α

•
∗, ∂

•
∗ ) over F is a Z-indexed collection of persistence modules (V •

n , α
•
n)

over F and persistence morphisms ∂ •
n : (V •

n , α
•
n)→ (V •

n−1, α
•
n−1) such that ∂ •

n ◦ ∂ •
n−1 = 0• for all n ∈ Z,

where 0• denotes the zero persistence morphism. Illustrated below is (V •
∗ , α

•
∗, ∂

•
∗) as a filtered sequence

of persistence modules and persistence morphisms:

· · · V •
n+1 V •

n V •
n−1 · · ·

∂•
n+2 ∂•

n+1 ∂•
n ∂•

n−1

For convenience, we may suppress the structure maps of V • and write (V •
∗ , ∂

•
∗ ) := (V •

∗ , α
•
∗, ∂

•
∗ ).

ii. The morphisms of Ch-PersF are persistence chain morphisms, defined as follows:

A persistence chain morphism f •
∗ : (V •

∗ , ∂
•
∗ ) → (W •

∗ , δ
•
∗ ) between two persistence complexes

(V •
∗ , ∂

•
∗ ) and (W •

∗ , δ
•
∗ ) over F is a Z-indexed collection of persistence morphisms f •

n : V •
n → W •

n

such that for all n ∈ Z, f •
n−1 ◦ ∂•

n = δ•n ◦ f •
n , i.e. we have the following commutative squares:

V •
n V •

n−1

W •
n W •

n−1

∂•
n

f •
n

# f •
n−1

δ•n

Observe that the notation for the persistence complex (V •
∗ , ∂

•
∗ ) has two “placeholder” indices: an index

t ∈ N0 denoted by the bullet (•) and an index n ∈ Z denoted by the asterisk (∗). Since each n ∈ Z identifies

a persistence module (V •
n , α

•
n) and each t ∈ N0 identifies an F-vector space V tn, a persistence complex (V •

∗ , ∂
•
∗ )

corresponds to the following commutative grid of vector spaces:
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V •
n+1 V •

n V •
n−1

: : :

...
...

...

V t+1
∗ : · · · V t+1

n+1 V t+1
n V t+1

n−1 · · ·

V t∗ : · · · V tn+1 V tn V tn−1 · · ·

V t−1
∗ : · · · V t−1

n+1 V t−1
n V t−1

n−1 · · ·

...
...

...

∂ t+1
n+2 ∂ t+1

n+1

αt+1
n+1

∂ t+1
n

αt+1
n

∂ t+1
n−1

αt+1
n−1

∂ tn+2 ∂ tn+1

αtn+1
∂ tn

αtn
∂ tn−1

αtn−1

∂ t−1
n+2 ∂ t−1

n+1

αt−1
n+1

∂ t−1
n

αt−1
n

∂ t−1
n−1

αt−1
n−1

αt−2
n+1 αt−2

n αt−2
n−1

Note that each column represents a single persistence module and each row represents a chain complex of

vector spaces and linear maps. Persistence complexes will be significant later in Section 3.3 of Chapter 3 where

we extend the construction of simplicial homology of simplicial complexes to the case of persistence modules.

The category Ch-A of chain complexes on an abelian category A also brings with it a family of chain

homology functors Hn(−) : Ch-A→ A, one for each n ∈ Z. We state a corresponding definition specific to the

category PersF below.

Definition 2.2.11. For each n ∈ Z, the nth chain homology functor Hn : Ch-PersF → PersF on Ch-PersF
sends a persistence complex (V •

∗ , ∂
•
∗ ) to its nth chain homology Hn(V

•
∗ , ∂

•
∗ ), which is the persistence module

given by

Hn(V
•
∗ , ∂

•
∗ ) =

ker(∂•
n)

im(∂•
n+1)

= coker
(
im(∂•

n+1) ↪→ ker(∂•
n)
)
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Section 2.3. Interval Decompositions of Persistence Modules

Now that we have definitions for isomorphisms and direct sums between persistence modules, it is possible for

us to talk about decompositions of persistence modules. Note that we use the term decomposition, or more

specifically direct sum decomposition, in the same way we would for vector spaces and modules. That is, a

decomposition of a persistence module consists of a (finite) direct sum of other persistence modules such that

the direct sum is isomorphic to the original persistence module.

In persistence theory, we are interested in a unique form of decomposition called interval decomposition.

In this section, we define the notions of interval modules and interval decompositions and provide examples for

each. To start, we provide a definition for interval modules, adapted from [CSGO13, Section 1.4].

Definition 2.3.1. Let F be a field. The J-interval module IJ• over F for some interval J ⊆ N0 is the

persistence module IJ• = (IJ• , iJ• ) : Poset(N0,≤)→ VectF with vector spaces IJt and structure maps iJs,t : IJt → IJs
given as follows:

IJt =

{
F if t ∈ J
0 if t ̸∈ J

for all t ∈ N0 and iJs,t =

{
idF if t, s ∈ J
0 otherwise

for all t, s ∈ N0 with t ≤ s.

If the interval J and the field F are arbitrary, we may drop references to both and refer to IJ• as an interval

module. If J = [a, b), we may write I[a,b)• to refer to IJ• . Similarly, we may write I[a,∞)
• if J = [a,∞).

Remark. The condition that iJs,t = idF if t, s ∈ J is stated as is,t = 1 in [CSGO13, Section 1.4]. In this case,

iJs,t = 1 refers to the linear map F→ F by k 7→ 1 · k = k for all k ∈ F.

Since we are only using N0 as the indexing set for persistence modules, we can characterize all intervals

in N0 as pairs of values. In particular, any interval in N0 can be represented using exactly one of the two

representations below:

[a, b) = {n ∈ N0 : a ≤ n < b} or [a,∞) = {n ∈ N0 : a ≤ n}

Observe that, assuming we allow b in [a, b) to have ∞ as a value (i.e. b ∈ N0 ∪ {∞}), every interval in N0 can

be unambiguously represented by the two endpoints a and b. Thus, in some papers (e.g. [ZC05; Bau21]), the

interval [a, b) is represented using an ordered pair (a, b).

Since we will be working at the level of persistence isomorphisms, it will be helpful to have a characterization

of persistence modules that are isomorphic to interval modules. We provide such a characterization below in

terms of ranks.

Lemma 2.3.2. A persistence module (V•, α•) over F is isomorphic to the interval module IJ• for some interval

J ⊆ N0 if and only if the vector spaces Vt and structure maps αs,t : Vt → Vs satisfy the following:

rank(Vt) =

{
1 if t ∈ J
0 if t ̸∈ J

and rank(αs,t) =

{
1 if t, s ∈ J
0 otherwise

(E1)

where rank(−) refers to the rank of F-vector spaces and of F-linear maps.

Proof. Let (V•, α•) be a persistence module over F.

For the forward direction, assume that V• ∼= IJ• for some interval J ⊆ N0 with IJ• = (IJ• , iJ• ).
Then, there exists a persistence isomorphism φ• : V• → IJ• with φ• = {φt : Vt →Wt}t∈N0

. By

Definition 2.2.3, φt : Vt → Wt is an F-vector space isomorphism for each t ∈ N0. Since linear
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isomorphisms preserve the ranks of vector spaces, we have the following for each t ∈ N0:

rank(Vt) = rank
(
φt(Vt)

)
= rank

(
IJt
)
=

{
rank(F) = 1 if t ∈ J
rank(0) = 0 otherwise

Similarly, composition with linear isomorphisms preserve the ranks of linear maps. Then, for all

t, s ∈ N0 with t ≤ s:

rank(αs,t) = rank(φs ◦ αs,t ◦ φt) = rank(is,t) =

{
rank(idF) = 1 if t, s ∈ J
rank(0) = 0 otherwise

Therefore, V• satisfies (E1) for the interval J ⊆ N0.

For the backwards direction, assume that (V•, α•) satisfies (E1) for some interval J ⊆ N0. To

construct the persistence isomorphism φ• : V• → IJ• with IJ• = (IJ• , iJ• ), we build the linear maps

φt : Vt → IJt inductively. For clarity, let 1t ∈ F refer to the multiplicative identity of F, specifically
as the vector space of IJ• at index t ∈ J , i.e. iJs,t(1t) = idF(1t) = 1s for all t, s ∈ J with t ≤ s.

1. Let a = min(J), which exists by the well-ordering principle on N0. That is, J = [a, b) for some

b ∈ N0 or J = [a,∞). Choose a nonzero σa ∈ Va, which exists by assumption of rank(Va) = 1.

Observe that {σa} is a basis of Va. Define the linear map φa : Va → IJa = F by σa 7→ 1a.

2. Let t ∈ J with t ̸= a. Let σt ∈ Vt be such that αt,a(σa) = σt. By assumption, rank(Vt) = 1 and

rank(αa,t) = 1. Then, σt ̸= 0 and {σt} is a basis for Vt. Define the linear map φt : Vt → IJt = F
by σt 7→ 1t.

3. Let t ∈ N0 with t ̸∈ J . By assumption, rank(Vt) = 0 and Vt is the trivial vector space. Then,

φt : Vt → IJt = 0 can only be the trivial map.

Let t, s ∈ N0 with t ≤ s. By Definition 2.2.1(ii), we need to show that the following composition

relation is satisfied: φs◦αs,t = iJs,t◦φt where αs,t : Vt → Vs is a structure map of V• and iJs,t : IJt → IJs
is that of IJ• . We examine three cases:

1. Assume t, s ∈ J . Then, Vt and Vs are non-trivial F-vector spaces with bases {σt} and {σs}
respectively. By Lemma 2.1.3(ii), σs = αs,a(σa) =

(
αs,t ◦ αt,a

)
(σa) = αs,t(σt). Then,(

φs ◦ αs,t
)
(σt) = φs(σs) = 1s = iJs,t(1t) =

(
iJs,t ◦ φt

)
(σt)

Therefore, the relation φs ◦ αs,t = iJs,t ◦ φt is satisfied.

2. Assume t ̸∈ J . Then, Vt is the trivial vector space by assumption of rank(Vt) = 0 and the relation

φs ◦ αs,t = iJs,t ◦ φt is trivially satisfied.

3. Assume s ̸∈ J . Then, IJs = 0 and the maps φs : Vs → IJs and iJs,t : IJt → IJs are necessarily zero.

Then, the composition relation φs ◦ αs,t = iJs,t ◦ φt = 0 is trivially satisfied

Therefore, φ• : V• → IJ• is a persistence isomorphism and V• ∼= IJ• . ■

As discussed in Section 2.1, the structure maps of a persistence module (V•, α•) are uniquely determined

by the collection {αt : Vt → Vt+1}t∈N0
of linear maps. Let the interval J ⊆ N0 be given by J = [ak, bk) for some

ak ∈ N0 and bk ∈ [ak,∞) ∪ {∞}. The condition (E1) in Lemma 2.3.2 can equivalently be stated as follows:

rank(Vt) =

{
1 if t ∈ [a, b)

0 otherwise
and rank(αt) =

{
1 if t ∈ [a, b− 1)

0 otherwise
(E2)

where [a, b − 1) is interpreted to be [a,∞) if b = ∞. Since the structure map αb−1 : Vb−1 → Vb has trivial
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codomain Vb = 0, it must also be trivial. Lemma 2.3.2 also implies that if V• ∼= I[a,b)• , then any nonzero

element σa ∈ Va will satisfy αt,a(σ) ̸= 0 for all t ∈ [a, b − 1). We illustrate this below relative to the sequence

representation of V•, with the additional assumption that b ∈ N0:

0 Va−1 Va Va+1 Va+2 · · · Vb−1 Vb 0

σa va+1 va+2 · · · vb−1 0

0 0 0

αa−1 αa αa+1 αb−1

/ / /

where vt := αt,a(σa) for t ≥ a + 1. Observe that for all t ∈ [a, b), {vt} is a basis for Vt since vt ̸= 0 and

rank(Vt) = 1 by assumption. For t ≥ b, vt = 0 and Vt is the trivial vector space. We give an example of a

persistence module that is isomorphic to an interval module below.

Example 2.3.3. Let (Q•, γ•) be a persistence module over Q with vector spaces Qt and structure maps

γt : Qt → Qt+1 given as follows:

Qt =


Q⟨a⟩ if t = 3

Q⟨b⟩ if t = 4

Q⟨c⟩ if t = 5

0 if t ̸∈ {3, 4, 5}

and

γ3 : Q3 → Q4 by a 7→ 2b

γ4 : Q4 → Q5 by b 7→ 1
3c

γ5 : Q5 → Q6 by c 7→ 0

Note that for all t ̸∈ {3, 4, 5}, the structure map γt : Qt → Qt+1 is necessarily the zero map since Qt = 0.

By Lemma 2.3.2, Q• ∼= IJ• with J = {3, 4, 5} = [3, 6). We can also determine a corresponding persistence

isomorphism φ• : Q• → I[3,6)• using the same arguments presented in the proof of Lemma 2.3.2. Choose

a ∈ Q3 = Q⟨a⟩. Then, the images of a under the structure maps of Q• is illustrated as follows:

0 Q2 Q3 Q4 Q5 Q6 0

a 2b 2
3c 0

γ2 γ3 γ3 γ3

Observe that {2b} and
{

2
3c
}
are bases of Q4 = Q⟨b⟩ and Q5 = Q⟨c⟩ respectively. The linear maps φt : Qt → I[3,6)t

of the persistence isomorphism φ• are then given as follows:

φ3 : Q3 = Q⟨a⟩ → I[3,6)3 = Q
a 7→ 1

,
φ4 : Q4 = Q⟨b⟩ → I[3,6)4 = Q

2b 7→ 1
,

φ5 : Q5 = Q⟨c⟩ → I[3,6)5 = Q
2
3c 7→ 1

Note that for all t ̸∈ [3, 6), the linear map φt : Qt → I[3,6)t is the trivial map since Qt = 0 and I[3,6)t = 0.

Let I[3,6)• = (I[3,6)• , i•), i.e. let is,t : I[3,6)t → I[3,6)s denote the structure maps of I[3,6)• . Since φ• is a persistence

morphism, the commutativity relation φs ◦ γs,t = is,t ◦ φt is satisfied for all t, s ∈ N0 with t ≤ s. This can be

visualized using the following diagram, where highlighted in red are elements of Qt and in blue are those

of I[3,6)t .
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0 = Q2 Q3

a

Q4

2b

Q5
2
3c

Q6 = 0

0

0 = I[3,6)2 I[3,6)3

1

I[3,6)4

1

I[3,6)5

1

I[3,6)6 = 0

0

γ2

φ2

γ3

φ3

γ4

φ4

γ5

φ5 φ6

0 idQ idQ 0

Next, we provide a definition for interval decompositions, adapted from [CSGO13, Section 1.5].

Definition 2.3.4. An interval decomposition of a persistence module (V•, α•) over a field F is a finite direct

sum
⊕

k IJk• of interval modules where {Jk}mk=1 is some multiset of intervals in N0 such that

V• ∼=
m⊕
k=1

IJk• ∼=
(
IJ1•
)
⊕
(
IJ2•
)
⊕ · · · ⊕

(
IJm•
)

We say that V• admits an interval decomposition if there exists an interval decomposition of V•.

Remark. Some authors refer to {Jk} as a collection instead of a multiset. While we may conventionally use

the term collection to refer to a set or some set-like object, we will use the term collection to refer

to multiset whenever we are talking about interval decompositions. For example, the collection

{[1, 4), [1, 4)} corresponds to the interval decomposition I[1,4)• ⊕ I[1,4)• .

Observe that the definition of the term “interval decomposition” does not require that a persistence iso-

morphism φ• : V• →
⊕

k IJk• be explicitly given, only that at least one exists. This convention is justified by

the following uniqueness theorem.

Theorem 2.3.5. Let (V•, α•) be a persistence module over F. Assume that there exists two interval decom-

positions for V• given as follows:

V• ∼=
⊕
k∈K

IJk• and V• ∼=
⊕
m∈M

ILm
•

where {Jk : k ∈ K} and {Lm : m ∈M} are two multisets of intervals in N0. Then, there exists a bijection

π : K →M between the indexing sets K and M such that for all k ∈ K, Jk = Lπ(k) as intervals in N0.

Remark. A proof is available under [CSGO13, Theorem 1.3].

The existence of the bijection π : K → M , as denoted in the theorem above, implies that the intervals of

{Jk} are exactly the intervals of {Lm}. If the multisets {Jk} and {Lm} are linearly ordered, then the bijection

π : K → M corresponds to a permutation or re-ordering of the intervals in {Jk}. This explains why some

authors describe interval decompositions as being unique up to permutation.

Furthermore, this implies that the multiset {Jk} of intervals that determine the interval decomposition⊕
k IJk• is unique up to persistence isomorphism. This uniqueness result explains why we can use the article the

when talking about interval decompositions, e.g. we talk of the interval decomposition of a persistence module.

Note that the persistence isomorphism V• →
⊕

k∈K IJk• behind the isomorphism relation V• ∼=
⊕

k∈K IJk• is not
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generally unique. This motivates the following terminology.

Definition 2.3.6. The persistence barcode Bar(V•) of a persistence module (V•, α•) is the multiset {Jk}mk=1

of intervals in N0 such that
⊕m

k=1 IJk• is an interval decomposition of V•, i.e. V• ∼=
⊕m

k=1 IJk• . Note that Bar(V•)

does not exist if V• does not have an interval decomposition.

The Structure Theorem (Theorem 4.1.1) for finitely-generated modules over a PID R states that the

invariant factors of a finitely-generated R-module are uniquely determined up to R-module isomorphism. An

equivalent way of saying this is that the invariant factors of an R-module (if an invariant factor decomposition

exists) is an invariant of the isomorphism type of R-modules.

In the same vein, the persistence barcode (if it exists) is an invariant of the isomorphism type of persistence

modules. Furthermore, the persistence barcode is a concise characterization of the ranks of the vector spaces

and structure maps of a persistence module. We state this in more detail below.

Proposition 2.3.7. Let (V•, α•) be a persistence module over F. Assume V• admits an interval decomposition

and let Bar(V•) be given by the multiset Bar(V•) = {Jk}mk=1 of intervals. Then,

rank(Vt) = card
{
J ∈ Bar(V•) : t ∈ J

}
(E3)

rank(αs,t) = card
{
J ∈ Bar(V•) : [t, s] = [t, s+ 1) ⊆ J

}
(E4)

where rank(−) refers to the rank of F-vector spaces and F-linear maps and card(−) refers to the number of

elements in a set, i.e. set cardinality.

Proof. Assume that V• ∼=
⊕m

k=1 IJk• for some multiset {Jk}mk=1 of intervals in N0. Then, there exists a

persistence isomorphism φ• : V• →
⊕

k IJk• with linear isomorphisms φt : Vt →
⊕m

k=1 I
Jk
t for t ∈ N0.

For (E3): Let t ∈ N0. By definition of interval module, we have the following for each ∈ {1, . . . ,m},

rank
(
IJkt
)
=

{
rank(F) = 1 if t ∈ Jk
rank(0) = 0 otherwise

Since φt : Vt →Wt is a linear isomorphism and by properties of the direct sum of vector spaces:

rank(Vt) = rank
(
φt(Vt)

)
= rank

(
m⊕
k=1

IJkt

)
=

m∑
k=1

rank
(
IJkt
)
= card

{
J ∈ Bar(V•) : t ∈ J

}
Therefore, Equation (E3) is satisfied.

For (E4): Let t, s ∈ N0 with t ≤ s. For each k ∈ {1, . . . ,m}, let γ ks,t refer to the structure map

γ ks,t : I
Jk
t → IJks of the interval module IJk• . Note that t, s ∈ Jk if and only if [t, s] ⊆ Jk. Therefore,

rank(γ ks,t) =

{
rank(idF) = 1 if [t, s] ⊆ Jk
rank(0) = 0 otherwise

Let γs,t :
⊕m

k=1 I
Jk
t →

⊕m
k=1 IJks be the structure map of

⊕m
k=1 IJk• on t → s. By definition of the

direct sum of persistence modules, γs,t =
⊕m

k=1 γ
k
s,t where

⊕m
k=1 γ

k
s,t is the linear map induced by

the direct sum operation between F-vector spaces. Since φ• must be a persistence morphism, the
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composition relation γs,t ◦ φt = φs ◦ αs,t is satisfied. Therefore,

rank(αs,t) = rank
(
(φs)

−1 ◦ γs,t ◦ φt
)
= rank(γs,t) = rank

(
m⊕
k=1

γ ks,t

)

=

m∑
k=1

rank
(
γ ks,t
)
= card

{
J ∈ Bar(V•) : [t, s] = [t, s+ 1) ⊆ J

}
Therefore, Equation (E4) is also satisfied. ■

It can be proven that finite-type persistence modules admit interval decompositions. We state this later in

Proposition 2.5.14 under Section 2.5 and prove it using an equivalence of categories.

The calculation of the interval decomposition of a given finite-type persistence module (V•, α•) requires

that both the vector spaces Vt and the structure maps αs,t : Vt → Vs for all t ∈ N0 be considered, for lack

of a better term, simultaneously for all indices t ∈ N0. In practice, this means that the decomposition of the

vector spaces Vt must be compatible with the structure maps, in that the collection of vector space isomorphisms

involving each Vt must form a persistence morphism. We give an example of this below.

Example 2.3.8. Let (V•, γ•) be a persistence module over Z5 with vector spaces given as follows:

Vt =


Z5⟨x1⟩ if t ∈ [0, 13)

Z5⟨y1, y2⟩ if t ∈ [13, 21)

Z5⟨z1, z2, z3⟩ if t ∈ [21,∞)

For t ̸= 12 and t ̸= 20, let γt : Vt → Vt+1 be the identity map on Vt, which is well-defined since Vt = Vt+1.

Define the structure map γt : Vt → Vt+1 of V• for t = 12 and t = 20 as follows:

γ12 : V12 → V13

x1 7→ y2

γ20 : V20 → V21

y1 7→ z1

y2 7→ z3

To determine the interval decomposition of C•, we need to find a decomposition of C• into persistence sub-

modules such each submodule is isomorphic to an interval module. For each t ∈ N0, At, Bt, and Ct be vector

subspaces of Vt given as follows:

At =


Z5⟨x1⟩ if t ∈ [0, 13)

Z5⟨y2⟩ if t ∈ [13, 21)

Z5⟨z3⟩ if t ∈ [21,∞)

Bt =


0 if t ∈ [0, 13)

Z5⟨y1⟩ if t ∈ [13, 21)

Z5⟨z1⟩ if t ∈ [21,∞)

Ct =


0 if t ∈ [0, 13)

0 if t ∈ [13, 21)

Z5⟨z2⟩ if t ∈ [21,∞)

Observe that, for all t ∈ N0, At is a Z5-vector subspace of Vt and that the structure map γt : Vt → Vt+1 of

V• satisfies γt(At) ⊆ At+1 ⊆ Vt+1. Therefore, the collection {At}t∈N0
of vector spaces determines a persistence

submodule A• of V• with A•(t) = At and the structure map At → At+1 defined by restricting the domain and

codomain of the structure map γt : Vt → Vt+1 of V• for all t ∈ N0. Similarly, the collections {Bt}t∈N0
and

{Ct}t∈N0
of Z5-vector spaces determine persistence submodules B• and C• of V• respectively.

Since for each t ∈ N0, Vt ∼= At⊕Bt⊕Ct as Z5-vector spaces (with the direct sum interpreted as an internal

direct sum of vector spaces), we have the following decomposition of V• as a persistence module:

V• ∼= A• ⊕B• ⊕ C•
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with the persistence isomorphism i• : A• ⊕ B• ⊕ C• → V• given by the inclusion maps it : At ⊕ Bt ⊕ Ct ↪→ Vt
for all t ∈ N0. This decomposition of V• is illustrated in the following diagram:

(t = 0) · · · (t = 12) (t = 13) · · · (t = 20) (t = 21) · · ·

V• : Z5⟨x1⟩ · · · Z5⟨x1⟩ Z5⟨y1, y2⟩ · · · Z5⟨z1, z2, z3⟩ Z5⟨z1, z2, z3⟩ · · ·

= = = = = =

A• : Z5⟨x1⟩ · · · Z5⟨x1⟩ Z5⟨y2⟩ · · · Z5⟨y2⟩ Z5⟨z3⟩ · · ·

⊕ ⊕ ⊕ ⊕

B• : Z5⟨y1⟩ · · · Z5⟨y1⟩ Z5⟨z1⟩ · · ·

⊕ ⊕

C• : Z5⟨z2⟩ · · ·

From the diagram above, we can conclude that the persistence submodules A•, B•, and C• of V• are isomorphic

to interval modules as follows:

For A• ∼= I[0,∞)
• : Let A• = (A•, α•), i.e. denote the structure maps of A• by αt : At → At+1. Recall that

αt(a) = γt(a) for all a ∈ At and for all t ∈ N0. Observe that for all t ∈ N0 = [0,∞),

rank(At) = 1 and rank(αt) = 1. Then, A• ∼= I[0,∞)
• by Lemma 2.3.2, relative to characteri-

zation by Equation (E2).

Alternatively, we can construct the persistence isomorphism φA• : A• → I[0,∞)
• explicitly as

follows: Denote the multiplicative identity of Z5 as 1. Then, for each t ∈ N0, define the

linear map φAt : At → I[0,∞)
t as follows:

If t ∈ [0, 13): Let φAt : At = Z5⟨x1⟩ → I[0,∞)
t = Z5 be given by x1 7→ 1.

If t ∈ [13, 21): Let φAt : At = Z5⟨y2⟩ → I[0,∞)
t = Z5 be given by y2 7→ 1.

If t ∈ [21,∞): Let φAt : At = Z5⟨z3⟩ → I[0,∞)
t be given by z3 7→ 1.

It should be straightforward to check that the linear maps φAt : At → I[0,∞)
t commute

with the structure maps αt : At → At+1 of A• and those of I[0,∞)
• . Therefore, φA• by

φA• = {φt}t∈N0
is a well-defined persistence morphism. Since each φAt is a vector space

isomorphism, φA• is a persistence isomorphism.

For B• ∼= I[13,∞)
• : Let B• = (B•, β•), i.e. denote the structure maps of B• by βt : Bt → Bt+1. Observe that

if t ∈ [13,∞), rank(Bt) = 1 and rank(βt) = 1. If t ∈ [0, 12), Bt is trivial and rank(Bt) = 0

and rank(βt) = 0. Then, B• ∼= I[13,∞)
• by Lemma 2.3.2.

The persistence isomorphism φB• : B• → I[13,∞)
• can be constructed similarly as with the

case of φA• , i.e.

If t ∈ [0, 13): Bt is trivial and φ
B
t : Bt → I[13,∞)

t = 0 can only be the trivial map.

If t ∈ [13, 21): The map φBt : Bt = Z5⟨y1⟩ → I[13,∞)
t = Z5 is given by y1 7→ 1.

If t ∈ [21,∞): The map φBt : Bt = Z5⟨z1⟩ → I[13,∞)
t = Z5 is given by z1 7→ 1.

For B• ∼= I[13,∞)
• : Let C• = (C•, ψ•). Note that if t ∈ [21,∞), rank(Ct) = 1 and rank(ψt : Ct → Ct+1) = 1. If

t ∈ [0, 21), rank(Ct) = 0 and rank(ψt : Ct → Ct+1) = 0. By Lemma 2.3.2, C• ∼= I[21,∞)
• .

The persistence isomorphism φC• : C• → I[21,∞)
• is given as follows: If t ∈ [21,∞), φCt : Ct =

Z5⟨z2⟩ → I[21,∞)
t = Z5 is given by z2 7→ 1. If t ∈ [0, 21), Ct = 0 and φCt can only be the

trivial map.
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Therefore, we have the following decomposition for V•:

V• ∼= A• ⊕B• ⊕ C• ∼= I[0,∞)
• ⊕ I[13,∞)

• ⊕ I[21,∞)
•

Consequently, the persistence barcode Bar(V•) of V• is given by Bar(V•) =
{
[0,∞), [13,∞), [21,∞)

}
.

Observe that, in the above example, the persistence barcode of V• corresponds to a collection of bases for

each Vt that is compatible with the structure maps. In particular, Example 2.3.8 is written such that elements

of the bases {x1, x2, x3}, {y1, y2}, and {z1, z2, z3} for Vt with t ∈ [0, 13), t ∈ [13, 21), and t ∈ [21,∞) respectively

are mapped either to 1 ∈ Z5 or 0 ∈ Z5 in the given interval decomposition for V•.

Unfortunately, this nice correspondence does not generally apply to arbitrary finite-type persistence mod-

ules. In the example below, we define the vector spaces of a persistence module using some set of indeterminates

but show an interval decomposition of said persistence modules that requires a change of basis for the vector

spaces involved.

Example 2.3.9. Let (W•, γ•) be a persistence module over Z3 with vector spaces given as follows:

Wt =


Z3⟨a1⟩ if t = 0

Z3⟨b1, b2⟩ if t = 1

Z3⟨c1, c2⟩ if t = 2

Z3⟨d1⟩ if t ≥ 3

Let the structure maps of W• of the form γt :Wt →Wt+1 for t ∈ N0 be given by

γ0 :W0 = Z3⟨a1⟩ →W1 γ1 :W1 →W2 γ2 :W2 →W3 γt :Wt →Wt+1 for all t ≥ 3

a1 7→ 2b1 + b2 b1 7→ c1 + c2 c1 7→ 0 d1 7→ d1

b2 7→ c1 + 2c2 c2 7→ d1

To determine the interval decomposition of W•, we must first find a decomposition of W• into persistence

submodules such that each submodule is isomorphic to an interval module. For each t ∈ N0, define the Z3-

vector spaces Ut and Vt as follows:

At =


Z3⟨a1⟩ if t = 0

Z3⟨2b1 + b2⟩ if t = 1

Z3⟨c2⟩ if t = 2

Z3⟨d1⟩ if t ≥ 3

and Bt =


0 if t = 0

Z3⟨b1 + b2⟩ if t = 1

Z3⟨2c1⟩ if t = 2

0 if t ≥ 3

For the collections {At}t∈N0
and {Bt}t∈N0

to determine persistence submodules A• = (A•, α•) and B• = (B•, β•)

ofW• respectively, we must show that linear maps αt : At → At+1 and βt : Bt → Bt+1 obtained by appropriately

restricting the domain and codomain of γt : Vt → Vt+1 are well-defined. This is shown by the following

calculations:

For {At}t∈N0
: It suffices to consider the images of the basis elements a1, 2b1 + b2, and c2 of A0, A1, and

A2 respectively under the appropriate structure map γt of W•:

γ0(a1) = · · · = 2b1 + b2

γ1(2b1 + b2) = 2(c1 + c2) + (c1 + 2c2) = 2c1 + 2c2 + c1 + 2c2 = c2

γ2(c2) = · · · = d1
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Note that for all t ≥ 3, γ3 is the identity map on Vt = Z3⟨d1⟩. Then, for all t ∈ N0,

γt(At) ⊆ At+1 and the linear map αt : At → At+1 obtained by restricting γt :Wt →Wt+1 is

well-defined. Therefore, A• = (A•, α•) by A•(t) = At and A•(t→ t+1) = αt is a persistence

submodule of W•.

For {Bt}t∈N0
: Note that for t ̸= 1, 2, Bt is trivial. It suffices to consider the image of b1 + b2 ∈ B1 and

2c1 ∈ B2 under the appropriate structure map γt of W•:

γ1(b1 + b2) = (c1 + c2) + (c1 + 2c2) = 2c1 + 3c2 = 2c1

γ2(2c1) = 2(0) = 0

Then, γ1(B1) ⊆ Z3⟨2c1⟩ = B2 and γ2(B2) ⊆ Z3⟨0⟩ = B3, and the linear maps β1 : B1 → B2

and β2 : B1 → B2 obtained by restricting γ1 :W1 →W2 and γ2 :W2 →W3 are well-defined.

For t ̸= 1, 2, define βt : Bt → Bt+1 to be the trivial map. Therefore, B• = (B•, β•) by

B•(t) = Bt and B•(t→ t+ 1) = βt is a persistence submodule of W•.

Observe that for t = 0 and for t ≥ 3, At ⊕Bt ∼= At = Vt since Bt is trivial. For the case of t = 2, we have that

{2b1 + b2, b1 + b2} is a basis for W2 = Z3⟨b1, b2⟩ by the following calculation:

(1)(2b1 + b2) + (2)(b1 + b2) = 2b1 + b2 + 2b1 + 2b2 = 4b1 + 3b2 = b1

(2)(2b1 + b2) + (2)(b1 + b2) = 4b1 + 2b2 + 2b1 + 2b2 = 6b1 + 4b2 = b2

Similarly, {2c1, c2} is a basis for W3 = Z3⟨c1, c2⟩ since 2(2c1) = 4c1 = c1. Therefore, Wt = At⊕Bt for all t ∈ N0

(taken as an internal direct sum) and we have the following persistence isomorphism relation:

W• ∼= A• ⊕B•

This is illustrated in the diagram below:

(t = 0) (t = 1) (t = 2) (t = 3) · · ·

W• : Z5⟨a1⟩ Z5⟨b1, b2⟩ Z5⟨c1, c2⟩ Z5⟨d1⟩ · · ·

= = = = =

A• : Z5⟨a1⟩ Z5⟨2b1 + b2⟩ Z5⟨c2⟩ Z5⟨d1⟩ · · ·

⊕ ⊕ ⊕ ⊕ ⊕

B• : 0 Z3⟨b1 + b2⟩ Z3⟨2c1⟩ 0 · · ·

The submodules A• and B• of W• are also isomorphic to interval modules, as described below:

For A• ∼= I[0,∞)
• : The persistence isomorphism φA• : A• → I[0,∞)

• is given as follows:

For t = 0: The map φA0 : A0 → I[0,∞)
0 = Z3 is given by a1 7→ 1 ∈ Z3.

For t = 1: The map φA1 : A1 → I[0,∞)
1 = Z3 is given by 2b1 + b2 7→ 1 ∈ Z3.

For t = 2: The map φA2 : A2 → I[0,∞)
2 = Z3 is given by c2 7→ 1 ∈ Z3.

For t ≥ 2: The map φAt : At → I[0,∞)
t = Z3 is given by d1 7→ 1 ∈ Z3.

We can confirm that the maps φAt : At → I[0,∞)
t commutes with the structure maps αt :

At → At+1 of A• and those of I[0,∞)
• . We can also conclude that A• ∼= I[0,∞)

• using Lemma

2.3.2 since rank(At) = 1 and rank(αt : At → At+1) = 1 for all t ∈ N0.

For B• ∼= I[1,3)• : The persistence isomorphism φB• : B• → I[1,3)• is given as follows:
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For t = 0: B0 is trivial and φB0 : B0 → I[1,3)• = 0 is necessarily the trivial map.

For t = 1: The map φB1 : B1 → I[1,3)1 = Z3 is given by b1 + b2 7→ 1 ∈ Z3.

For t = 2: The map φB2 : B2 → I[1,3)2 = Z3 is given by 2c1 7→ 1 ∈ Z3.

For t ≥ 2: Bt and I[1,3)t are both trivial and φBt is necessarily the trivial map.

Observe that the maps
{
φBt
}
t∈N0

commute with the structure maps of B• and those of I[1,3)• .

In particular, we have the following for the case of t = 1 and t = 2:(
φB2 ◦ β1

)
(b1 + b2) = φB2 (2c1) = 1 = idZ3

(1) =
(
idZ3

◦ φB1
)
(b1 + b2)(

φB3 ◦ β2
)
(2c1) = φB3 (0) = 0 = idZ3(0) =

(
idZ3 ◦ φB2

)
(2c1)

Alternatively, we can use Lemma 2.3.2 (relative to its characterization by Equation (E2)) to

determine that B• ∼= I[1,3)• since we have the following:

rank(Bt) =

{
1 if t ∈ [1, 3)

0 otherwise
and rank(βt) =

{
1 if t ∈ [1, 3− 1) = 1

0 otherwise

Therefore, we have the following persistence isomorphism relation:

W• ∼= A• ⊕B• ∼= I[0,∞)
• ⊕ I[1,3)•

and the persistence barcode of W• is given by Bar(W•) =
{
[0,∞), [1, 3)

}
.

In Chapter 4, we discuss a method of calculating the interval decomposition of finite-type persistence

modules that are the nth chain homology of a chain complex of finite-type persistence modules.
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Section 2.4. The Category of Graded Modules over Polynomial Rings

Let R be a commutative ring with identity 1R ∈ R. One of the key results in persistence theory is the

equivalence between the category PersF of persistence modules and the category GrModR[x] of graded R[x]-

modules, discussed in Section 2.5.

However, we have found that definitions and descriptions for graded modules, particularly those involving

the category of graded modules, seem to be sparse in introductory-level abstract algebra texts, and that rigorous

definitions often only appear in more specialized fields such as commutative algebra and homological algebra.

To avoid confusion, we identify a number of definitions, notation, and results involving graded R[x]-modules in

this section that are used throughout the paper. We use the following texts as our primary references.

1. Graded Syzygies [Pee11] by Irena Peeva.

2. Methods of Graded Rings [NO04] by Constantin Nǎstǎsescu and Freddy Van Oystaeyen.

To start, most of the literature regarding graded modules and persistence modules use the term action to refer

to the scalar multiplication operation on a module. We state a definition of action below.

Definition 2.4.1. The action of R on an R-module M is a biadditive group action · : R ×M → M that

defines the scalar multiplication operation on M .

Note that the requirements that the action · : R ×M → M be a group action and be biadditive satisfy the

usual conditions for scalar multiplication on an R-module. We state this in more detail below:

1. The condition that · : R ×M → M be a group action requires that · must satisfy the identity and

compatibility axioms with respect to the multiplication operation ·R : R×R→ R on R (as a ring), i.e.

for all m ∈M and r, s ∈ R,

1R ·m = m and r · (s ·m) = (r ·R s) ·m

2. The condition that · : R × M → M be biadditive requires that · be linear on the first and second

arguments with respect to addition +R : R×R→ R on R (as a ring) and to addition +M :M×M →M

on M (as an abelian group), i.e. for all r, s ∈ R and m,n ∈M ,

(r +R s) ·m = (r ·m) +M (s ·m)

r · (m+M n) = (r ·m) +M (r · n)

The two equalities above are sometimes called the distributivity properties of scalar multiplication (of

modules).

Next, we provide definitions for the standard grading on R[x] taken from [Pee11, Section 1].

Definition 2.4.2. The standard grading on the polynomial ring R[x] is given by polynomial degree.

i. A nonzero element f ∈ R[x] is homogeneous if f = axt for some nonzero a ∈ R and t ∈ N0, i.e. f is

a monomial. In this case, we say that f = axt is homogeneous of degree t and write degh(f) = t.

ii. For all t ∈ N0 with t ≥ 1, define Rxt as the subring of R[x] consisting of all monomials of degree t and

the zero polynomial, i.e. Rxt = {rxt : r ∈ R}. Define Rx0 := R.

iii. Under the standard grading, the homogeneous component of R[x] of degree t ∈ N0 is the subring

Rxt of R[x]. Observe that R[x] =
⊕

t∈N0
Rxt as abelian groups with ⊕ taken as an internal direct sum.

In this paper: when R[x] is viewed as a graded ring, we always equip R[x] with the standard grading.
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Remark. For a general definition for graded rings (i.e. not specific to R[x] under the standard grading), see

[Pee11; NO04]. Note that the grading on a ring R can be defined relative to any abelian group G.

Here, the degrees of homogeneous elements take values in G and say that R is G-graded.

In our case, we consider the standard grading on R[x] to be an N0-grading on R[x] since we only

expect the degrees of homogeneous elements of R[x] to take values in N0. We point this out since, in

some references, e.g. [Web85; Mar; NO04], R[x] is described to be Z-graded with the homogeneous

components of R[x] of degree t ∈ Z with t < 0 being trivial abelian groups. Here, R[x] is often seen

as a subring of the Laurent polynomial ring R[x, x−1].

With R[x] equipped with the standard grading, observe that we denote the degree of f ∈ R[x] by degh(f), as

opposed to deg(f). Note that, conventionally, deg(f) denotes the degree of a polynomial f ∈ R[x], disregarding
the equipped grading on R[x]. More specifically, for all nonzero f ∈ R[x], we have that:

degh(f) =

{
deg(f) if f is homogeneous, i.e. f is a monomial

undefined otherwise

We identify two advantages to this approach:

1. Writing degh(f) emphasizes that f ∈ R[x] is to be considered as an element of a graded ring. This ad-

ditional notation suggests that degh(f) and deg(f), while related or similar, are two distinct properties.

We have found this observation to be important when first learning graded module theory especially

since, relative to a more general definition of graded ring, R[x] may equipped with a grading other than

the standard grading. For example, we may equip R[x] with the trivial grading wherein all elements

of R[x] are defined to be homogeneous of degree 0 ∈ N0. In this case, we have that degh(3x
2) = 0

despite deg(3x2) = 2. While we do not consider cases like these in this paper, it is helpful to know this

distinction for other applications.

2. Writing a relation in terms of degh(−) emphasizes that the relation is generally only valid when the

arguments are homogeneous elements of a graded ring. This will be relevant later in Section 4.3 where

we require and expect nonzero elements to be homogeneous.

The notion of graded rings gives rise to the notion of graded modules. In this paper, since we only consider

the graded structure of modules over R[x] equipped with the standard grading, we use a definition that is

specific to this type of modules. We state this below.

Definition 2.4.3. An R[x]-module M is a graded R[x]-module or graded module if there exists an N0-

indexed family {Mt}t∈N0
of additive subgroups Mt of M such that two conditions are satisfied:

i. The underlying abelian group M decomposes into M =
⊕

t∈N0
Mt with equality and (internal) direct

sum taken to be of abelian groups (seen as additive groups).

ii. For all s, t ∈ N0, Rx
s ·Mt ⊆Ms+t, i.e. the action of R[x] on M respects the grading on R[x] and on M .

For all t ∈ N0, we call the additive subgroup Mt ⊆ M the homogeneous component of M of degree t.

We call the direct sum
⊕

t∈N0
Mt the homogeneous decomposition of M . An nonzero element f ∈ M

is homogeneous if there exists t ∈ N0 such that f ∈ Mt. In this case, we say that f is homogeneous of

degree t and write degh(f) = t. A subset A ⊆ M is homogeneous is each element a ∈ A is homogeneous

(not necessarily of the same degree). A R[x]-submodule N of M is called a graded submodule if N is also a

graded R[x]-module.

Remarks. (1) The statement Rxs ·Mt is specific to the ring being R[x] equipped with the standard grading.
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This condition can be written more generally as RsMt ⊆ Ms+t where Rs is the homogeneous

component of degree s ∈ N0 of the graded ring R =
⊕

t∈N0
Rt.

(2) The remarks about G-grading of rings below Definition 2.4.2 also apply to graded modules. More

specifically, if the graded ring is considered to be G-graded, then the graded modules over said

ring is also G-graded. Since we consider R[x] to be N0-graded in this paper, this means that our

graded R[x]-modules are also N0-graded.

By the definition above, the homogeneous decomposition of a graded R[x]-moduleM refers to a direct sum

of abelian groups. In practice, we usually define graded R[x]-modules at the level of R-modules. That is, we

define a graded R[x]-module using two collections of objects:

1. A family {Mt}t∈N0
of R-modules such that Mt ∩Ms = {0} whenever t ̸= s, i.e. each R-module Mt is

seen as having nonzero elements distinct from the other R-modules in said family. Note that we usually

force the condition Mt ∩Ms = {0} by using the family {Mtx
t}t∈N0

constructed from {Mt}.

We then define M to be the (internal) direct sum M =
⊕

t∈N0
Mt of R-modules. This induces an

R-module structure onM . Observe that the nonzero elements in one summandMt cannot be generated

using sums of R-multiples of elements from other summands, i.e. Ms with t ̸= s. If R is a field F,
then M is a (graded) F-vector space. As a sidenote, a graded F-vector space is an F-vector space (i.e.

F-module) that satisfies Condition (i) of Definition 2.4.3. Note that all graded modules over F[x] are
graded F-vector spaces. However, not all graded F-vector spaces form graded modules, e.g. the action

of F[x] may not be defined.

2. A collection of assignments of the form x ·mt := mt+1, defining the product between x ∈ R[x] of degree
1 and each element mt ∈Mt of degree t ∈ N0 to some element mt+1 ∈Mt+1 of degree t+ 1.

These assignments are then extended linearly over the action of R on each Mt, the ring operation

on R[x], and the addition operation on M as an R-module. If the action of R[x] is well-defined, then

M becomes an R[x]-module.

The condition that Mt ∩Ms = {0} whenever t ̸= s satisfies the condition that M is a direct sum
⊕

t∈N0
Mt, i.e.

each element m ∈M can be represented uniquely as a sum of homogeneous elements. The set of assignments in

the form x ·mt := mt+1 forces the action of R[x] on M to satisfy Rx ·Mt ⊆Mt+1. If the assignments result in a

well-defined action of R[x] on M , then the condition that Rxs ·Mt ⊆Ms+t is satisfied. Therefore, the resulting

R[x]-module M is also a graded R[x]-module. We provide an example of this construction below.

Example 2.4.4. For each t ∈ N0, define the Z-module Mt by Mt := Z⟨a, b⟩xt = {k1axt + k2bx
t : k1, k2 ∈ Z}

where Z⟨a, b⟩ is the free Z-module with basis {a, b}. Then, the direct sum below results in an Z-module:

M =
⊕
t∈N0

Mt =
⊕
t∈N0

Z⟨a, b⟩xt =

{ ∞∑
t=0

(
kat ax

t + kbt bx
t
)
: only finitely many kat , k

b
t ∈ Z are nonzero

}

Define the action of Z[x] on M , which we denote as ⋆ : Z[x] ×M → M in this example for clarity, by linearly

extending the following set of assignments on M :

x ⋆ axt := 2axt+1 and x ⋆ bxt := 3bxt+1 for all t ∈ N0

Here, linearly extending means that we use the compatibility and biadditivity axioms, as discussed under

Definition 2.4.1, to calculate assignments of ⋆ : Z[x] ×M → M not of the form x ⋆ axt and x ⋆ bxt Below, we

provide examples of this linear extension.
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In the equality = , we extend the assignments x ⋆ axt and x ⋆ bxt over . . .

x · (ax3 + bx5) = (x ⋆ ax3) + (x ⋆ bx5) = 2ax4 + 3bx6 . . . addition + on M as a Z-module.

x · 3ax11 = 3 · (x ⋆ ax11) = 3 · (2ax12) = 6ax12 . . . the action · of Z on M11 = Q⟨a, b⟩x11.

x2 ⋆ ax3 = (x · x) ⋆ ax3 = x ⋆ (x ⋆ ax3) = x ⋆ (2ax4) = 4ax5 . . . ring operation · on Z[x].

(x+ x2) ⋆ b = (x ⋆ bx0) + (x2 ⋆ bx0) = 3bx+ 9bx2 . . . addition + on Z[x] as a ring.

We claim that this describes a well-defined action of Z[x] on M , which makes M a Z[x]-module. We can

verify that the decomposition M =
⊕

t∈N0
Z⟨a, b⟩xt, along with the action ⋆ on M , satisfies both conditions in

Definition 2.4.3. This determines M to be a graded Z[x]-module with homogeneous component of degree t ∈ N0

given by Z⟨a, b⟩xt. We list some examples of elements of M and determine their homogeneity or degree:

1. m1 = 2ax + 3bx2 is not a homogeneous element of M , i.e. degh(2ax + 3bx2) is undefined. Note

that it may feel natural to extend deg(−) : R[x] → N0 using powers of x, e.g. we may consider that

deg(2ax + 3bx2) = 2. However, the distinction between degh(−) and deg(−) in the case of R[x] also

holds in the case of M .

2. m2 = 4ax5 − 3bx5 = (4a− 3b)x5 is a homogeneous element of M with degh(m2) = 5.

3. m3 = −7a is a homogeneous element with degh(m3) = 0.

Note that, by construction, the homogeneous elements ofM are exactly monomials of the form fxt with nonzero

f ∈ Z⟨a, b⟩ and t ∈ N0.

We want to point out that the elements of an R[x]-module M are generally not polynomials in x (unlike

the example above). Consequently, if the R[x]-module M is graded, the degrees of the homogeneous elements

of M are not generally immediately apparent from the notation for said elements.

It would be very helpful (calculation-wise) if we can, without loss of generality, assume that the notation

of the elements of a graded R[x]-module also carry information about the degree. To formalize this, we need a

notion of similarity or equivalence between graded R[x]-modules. First, we provide a definition for the family of

homomorphisms between graded modules, which in turn induces a definition for isomorphisms between graded

modules.

Definition 2.4.5. Let φ : M → N be an R[x]-module homomorphism between graded R[x]-modules M and

N . Let Mt and Nt refer to the homogeneous component of M and N of degree t ∈ N0 respectively.

i. We call φ : M → N a graded R[x]-module homomorphism or graded homomorphism if for

all t ∈ N0, φ(Mt) ⊆ Nt. That is, φ sends homogeneous elements of M to either zero or homogeneous

elements of N of the same degree.

ii. If φ : M → N is both an R[x]-module isomorphism and a graded homomorphism, then φ : M → N

is called a graded R[x]-module isomorphism or graded isomorphism and we say that M and N

are graded isomorphic, denoted M ∼= N .

Graded modules and graded homomorphisms give rise to a category of graded modules. We state this as

a theorem below.

Theorem 2.4.6. Let R be a PID. Graded R[x]-modules and graded R[x]-module homomorphisms form a

well-defined category, denoted GrModR[x] and called the category of graded R[x]-modules.
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Remark. We refer to [NO04, Section 2.2] for the claim of GrModR[x] being a well-defined category. Note that

the category of graded modules can be more generally defined using grading over any abelian group

G and over some G-graded ring R.

For our case, the symbol GrModR[x] refers specifically to the category of N0-graded modules over

R[x] equipped with the standard grading. Note that while it is possible to define GrModR[x] to be

of Z-graded modules (following remarks under Definition 2.4.2), the category equivalence presented

in Section 2.5 between PersF and GrModF[x] is not valid for said definition.

Observe that all graded R[x]-modules and all graded R[x]-module homomorphisms are R[x]-modules and

R[x]-module homomorphisms respectively. Equivalently, we can also say that GrModR[x] is a subcategory of

ModR[x] or that there exists a forgetful functor GrModR[x] →ModR[x] (see [NO04, Section 2.5]).

Later in Section 4.3, we use this subcategory relationship to investigate an algorithm involving F[x]-
modules and see if it can be extended to the case of graded F[x]-modules. The main hurdle here is that the

graded structure of the graded modules involved may not be preserved across multiple steps, which may result

in an isomorphism that is only true at the level of R[x]-modules and not at the level of graded R[x]-modules.

The distinction between isomorphisms in ModR[x] and graded isomorphisms in GrModR[x][x] becomes relevant

when we use the category equivalence discussed in Section 2.5.

In Chapter 4, we will talk about different levels of isomorphisms involving graded R[x]-modules. To avoid

ambiguity, we identify some notation below.

Remark 2.4.7. When given an equality (=) or isomorphism relation (∼=) involving R[x]-modules, the following

symbols denote the category in which the relation applies.

i. The symbol Ab in
Ab
= or

Ab∼= denotes a relation either in the category AbGrp of abelian groups, ModR of

R-modules, or VectF of F-vector spaces. In these cases, only the additive structure and (if defined) the

action of R on the modules involved are respected by the relations.

In this paper, we often use this shorthand to describe the homogeneous decomposition of graded F[x]-
modules, wherein an accompanying collection of assignments in the form x ·mxt is expected.

ii. The symbol Mod in
Mod
= or

Mod∼= denotes a relation in the category ModR[x] of R[x]-modules, i.e. the relation

respects the action of R[x] on the R[x]-modules involved (and not just R) but it may not respect the

graded structure (if such exists).

iii. The symbol GrMod in
GrMod
= or

GrMod∼= denotes a relation in the category GrModR[x] of graded R[x]-modules,

i.e. the relation involves graded R[x]-modules and is given by a graded isomorphism.

Note that the symbols Ab, Mod, and GrMod can be seen as increasing restrictions on the relation. For

example, the relation M
GrMod
= N implies M

Mod
= N which implies M

Ab
= N . The converse is not generally true.

Next, we state the result that allows us to assume without loss of generality that the notation for the

elements of a graded R[x]-module carry information about their homogeneity or degree.

Proposition 2.4.8. Let M be a graded R[x]-module and denote its homogeneous component of degree t ∈ N0

by Mt ⊆ M . Then, there exists a graded R[x]-module M ′ such that the homogeneous component of M ′ of

degree t ∈ N0 is given by Mtx
t and M ′ is graded isomorphic to M .

Proof. Assume M is a graded R[x]-module. By definition, there exists a family {Mt}t∈N0
of additive sub-
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groups Mt of M such that

M
Ab
=
⊕
t∈N0

Mt and Rxs ·Mt ⊆Mt+s

where · denotes the action of R[x] onM . The homogeneous component ofM of degree t ∈ N0 is given

by Mt. By restriction of the action of R[x] on M , each additive subgroup Mt is also an R-module.

For each t ∈ N0, define the R-module Mtx
t by the canonical isomorphism ηt : Mt → Mtx

t by

mt 7→ mtx
t for all mt ∈Mt. Since Mtx

t ∩Msx
s = {0} whenever t ̸= s,

⊕
t∈N0

Mtx
t is a well-defined

(internal) direct sum of R-modules. Define the R-module M ′ by

M ′ :=
⊕

t∈N0

Mtx
t

Then, for all m ∈ M ′, m decomposes uniquely into
∑
t∈N0

mtx
t with mt ∈ Mt for all t ∈ N0 such

that only finitely many mt’s are nonzero.

Let η :=
⊕

t∈N0
ηt be the R-module homomorphism η : M → M ′ induced by the direct sum

operation betweenR-modules. Observe that η must be anR-module isomorphism. Let ⋆ : R[x]×M →
M be given by xs ⋆ m := η

(
xs · η−1(m)

)
for all m ∈ M ′ and s ∈ N0. More specifically, if m ∈ M ′

decomposes into m =
∑
t∈N0

mtx
t with mt ∈Mt for all t ∈ N0, then

xs ⋆ m = xs ⋆
∑
t∈N0

mtx
t =

∑
t∈N0

η
(
xs · η−1(mtx

t)
)
=
∑
t∈N0

(xs ·mt)x
t+s

Since Rxs · Mt ⊆ Mt+s, (x
s · mt) ∈ Mt+sx

t+1. Since η is an R-module isomorphism, ⋆ forms a

well-defined action of R[x] on M ′ and makes M ′ an R[x]-module.

Let t, s ∈ N0. Since Rxs ⋆ Mtx
t = (Rxs ·Mt)x

t+s ⊆ (Mt+s)x
t+1 = Mt+sx

t+s, M ′ is a graded

R[x]-module with homogeneous component of degree t ∈ N0 given by Mtx
t. Since η(Mt) = Mtx

t,

η is a graded R[x]-module homomorphism. Since η is an R[x]-module isomorphism, η is a graded

isomorphism. Therefore, M and M ′ are graded isomorphic. ■

Observe that the fact that M
Ab
=
⊕

t∈N0
Mt is a direct sum of R-modules is critical here since it implies

that each nonzero homogeneous element of M has a unique degree. Then, using the proposition above, we can

assume the following:

Remark 2.4.9. Let M be a graded R[x]-module. In this paper, assume without loss of generality that there

exists a family {Mt}t∈N0
of R-modules such that

M
Ab
=
⊕
t∈N0

Mtx
t and Rxs ·Mt ⊆Ms+t for all t, s ∈ N0

and the homogeneous component of M of degree t ∈ N0 is exactly Mtx
t. Therefore, a nonzero element m ∈M

is homogeneous of degree t ∈ N0 if and only if m = mtx
t for some mt ∈Mt.

Note that some R[x]-module isomorphisms, if between two graded R[x]-modules, can be made into graded

R[x]-module isomorphisms by applying appropriate shifting in grading. Below, we provide a definition for this

grading shift.

Definition 2.4.10. LetM be a graded R[x]-module and assume, following Remark 2.4.9, that the homogeneous
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component of M of degree t is given by Mtx
t for some R-module Mt for all t ∈ N0. For each k ∈ N0, define the

k-upwards shift ΣkM of a graded R[x]-module M to be the graded R[x]-module given as follows.

i. The underlying abelian group of ΣkM is given by ΣkM :=
⊕

t∈N0
Mtx

t+k =
⊕∞

t=kMt−kx
t.

ii. The action of R[x] on ΣkM satisfies x · axt+k = bxt+k+1 whenever x ·M axt = bxt+1 with axt ∈Mtx
t ⊆

M , bxt+1 ∈Mt+1x
t+1 where ·M refers to the action of R[x] on M .

The homogeneous component of ΣkM of degree t ∈ N0 is given by Mt−kx
t if t ≥ k and trivial if t < k. The

index k ∈ N0 is called the grading shift or shift of ΣkM .

Remark. In [Pee11; NO04], the k-upwards shift ΣkM of M is denoted as M(−k) since the homogeneous

component of ΣkM =M(−k) of degree t ≥ k is exactly the homogeneous component of M of degree

t− k. The notation ΣkM follows that of [ZC05].

One key application of upwards shifts involves the isomorphism between R[x] and ΣkR[x]. Let φ : R[x]→
ΣkR[x] be given by rxt 7→ rxt+k. We claim that φ is an R[x]-module homomorphism with inverse rxt 7→ rxt−k.

Note that ΣkR[x] has no elements of the form rxt with t < k. Observe that if k ≥ 1, φ sends the homogeneous

elements of R[x] of degree t ∈ N0 to the homogeneous component of ΣkR[x] of degree t + k ̸= t. Therefore, φ

is not a graded isomorphism. In other words, we have that

If k ≥ 1: R[x]
Mod∼= ΣkR[x] but R[x]

GrMod

̸∼= ΣkR[x]

Note that this affects how the Structure Theorem on finitely-generated F[x]-modules in in the category ModF[x]
translates to the category GrModF[x] of graded F[x]-modules.

Next, we identify a number of useful results involving algebraic constructions in GrModR[x], particularly

those that extend, in a specific sense, those of the ungraded category ModR[x] of R[x]-modules.

Proposition 2.4.11. An R[x]-submodule N of a graded R[x]-module M is a graded R[x]-module if and only

if there exists a homogeneous system of generators for N , i.e. there exists a homogeneous set of elements in M

that generates N .

Remark. The first steps of the proof can be found under [Mar, Proposition 2.1]. This proposition is also listed

as [Pee11, Exercise 2.8].

Proposition 2.4.12. Kernels and images of graded homomorphisms are graded, i.e.

If φ : M → N is a graded R[x]-module homomorphism between graded R[x]-modules M and N , then ker(M)

is graded submodule of M and im(M) is a graded submodule of N .

Remark. A proof is available under [Pee11, Proposition 2.9, p8-9].

Proposition 2.4.13. Quotients of graded modules over graded submodules are graded, i.e.

LetM be a graded R[x]-module and N a graded submodule ofM . Following Remark 2.4.9, let the homogeneous

component of M and N of degree t ∈ N0 be given by Mtx
t and Ntx

t with R-modules Mt and Nt respectively.

Then, M/N is a graded R[x]-module with homogeneous component of degree t ∈ N0 given by (Mt /Nt)x
t.

Remark. Note that M / N = coker(N ↪→ M) and the inclusion map N ↪→ M is a graded homomorphism.

[Pee11, Proposition 2.9, p8-9] states that cokernels of graded homomorphisms are also graded along

with a proof.

page 59 of 169



Proposition 2.4.14. Direct sums of graded modules are graded, i.e.

Let M and N be graded R[x]-modules. Following Remark 2.4.9, let the homogeneous component of M and N

of degree t ∈ N0 be given by Mtx
t and Ntx

t with R-modules Mt and Nt respectively. Then, M ⊕N is a graded

R[x]-module with homogeneous component of degree t ∈ N0 given by (Mt ⊕Nt)xt.

Remark. This is discussed in [NO04, p20] and listed as [Mar, Exercise 1.4]. [Pee11] does not seem to explicitly

state this but assumes this in other results such as [Pee11, Exercise 2.9, Theorem 2.10].

Next, we state a result involving upward shifts in grading and quotients.

Proposition 2.4.15. Let M be a graded R[x]-module and let N be a graded submodule of M . For all s ∈ N0,

Σs
(
M
/
N
) GrMod∼=

(
ΣsM

) / (
ΣsN

)
That is, the upwards shifts distribute over quotients.

Proof. Since N is a graded submodule of M , then ΣsN must also be a graded submodule of ΣsM and the

quotient ΣsM/ΣsN is well-defined. Denote the homogeneous component of degree t ∈ N0 of a graded

module by addition of the subscript t. For all t < s, (ΣsM)t = 0, (ΣsN)t = 0, and (Σs(M/N))t = 0.

For all t ≥ s, we have that(
Σs
(
M
/
N
))
t
= (M

/
N)t−s =Mt−s

/
Nt−s = (ΣsM)t

/
(ΣsN)t =

(
(ΣsM)

/
(ΣsN)

)
t

by Definition 2.4.10 (for ΣkM) and by Proposition 2.4.15 (involving quotients). ■

Recall that F[x] is a PID for any field F. The Structure Theorem (Theorem 4.1.1) on ModF[x] guarantees

the existence and uniqueness of invariant factor decompositions for finitely generated F[x]-modules up to F[x]-
module isomorphism. In Section 4.3, we state a corresponding result in GrModF[x] which we call the The Graded

Structure Theorem (Theorem 4.3.1) for graded invariant factor decompositions (given in Definition 4.3.2) for

finitely generated graded modules. For convenience, statements of Theorem 4.3.1 and Definition 4.3.2 are

included below.

Theorem 4.3.1. The Graded Structure Theorem.

Let M be a finitely generated graded F[x]-module over F[x] for some field F. Then, there exists a finite direct

sum of shifted cyclic graded submodules of F[x] that is graded isomorphic to M as follows:

M
GrMod∼= Σs1

(
F[x]
(xt1)

)
⊕ · · · ⊕Σsr

(
F[x]
(xtr )

)
⊕ Σsr+1F[x]⊕ · · · ⊕ ΣsmF[x]

with indices s1, . . . , sr, . . . , sm ∈ N0 and non-zero, non-unit xt1 , xt2 , . . . , xtr ∈ F[x] such that the divisibility

relation xt1
∣∣xt2 ∣∣ · · · ∣∣xtr is satisfied. Furthermore, the collection

{
(xt1 , s1), . . . , (x

tr , sr), (0, sr+1), . . . , (0, sm)
}

is uniquely determined by M up to graded isomorphism.

Remarks. (1) We use the term cyclic similarly in the case of R[x]-modules, i.e. a cyclic graded module is a

graded module that can be generated by a single element. It can be verified that cyclic graded

modules can be generated by a single homogeneous element as well.

(2) Note that the ideal (xt) = F[x] · xt is a graded submodule of F[x] since it is generated by a
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homogeneous element xt. Therefore, the quotient F[x]/(xt) results in a graded module. In this

case, we call (xt) a graded ideal of F[x].

Definition 4.3.2. Let M be a finitely generated F[x]-module and let the following direct sum decomposition

of M be as denoted in the Graded Structure Theorem (Theorem 4.3.1):

M
GrMod∼= Σs1

(
F[x]
(xt1)

)
⊕ · · · ⊕Σsr

(
F[x]
(xtr )

)
⊕ Σsr+1F[x]⊕ · · · ⊕ ΣsmF[x]

This decomposition is called the graded invariant factor decomposition of M . The invariant factors

of M are given by xt1 , . . . , xtr ∈ F[x] (which are non-zero and non-unit) and the grading shifts of M by

s1, . . . , sm ∈ N0.

The notion of grading on R[x]-modules and R[x]-module homomorphisms also extend to the case of chain

complexes. We provide relevant definitions below.

Definition 2.4.16. A chain complex C∗ = (Cn, ∂n)n∈Z of R[x]-modules is a graded chain complex if for all

n ∈ Z, Cn is a graded R[x]-module and ∂n : Cn → Cn−1 is a graded homomorphism. A chain map φ∗ : C∗ → A∗
with φ∗ = (φn : Cn → An)n∈Z between graded chain complexes C∗ and A∗ is a graded chain map if each

homomorphism φn is a graded homomorphism.

The collection of graded chain complexes and graded chain maps also form a chain complex category and

a corresponding chain homology functor. We identify some notation below.

Definition 2.4.17. Let Ch-GrModR[x] denote the category of graded chain complexes of graded R[x]-

modules and graded chain maps. To each n ∈ Z, let Hn(−) refer to the nth chain homology functor

Hn(−) : Ch-GrModR[x] → GrModR[x].

Remark. For the claim of Ch-GrModR[x] being well-defined, we refer to [NO04, Section 2.2] which claims

that GrModR[x] is an abelian category, and to [Rot08, Section 5.5] which states that each abelian

category has a corresponding category of chain complexes and family of homology functors. Note

that Proposition 2.4.13 states that the nth chain homology of a graded chain complex, as the cokernel

of a graded homomorphism, must be a graded module.

Note that, much like how GrModR[x] can be seen as a subcategory of ModR[x], the category Ch-GrModR[x]

of graded chain complexes can be seen as a subcategory of the category Ch-ModR[x] of chain complexes of R[x]-

modules.

Lastly, the additional structure required for the grading for graded R[x]-modules also brings about graded

versions of certain properties of ungraded R[x]-modules. For example, [NO04, p21] defines a graded F[x]-module

to be graded-free or gr-free if it has a homogeneous basis, and provides a counterexample in which a graded

module over some graded ring (other than R[x]) with a non-homogeneous basis is not graded-free. For clarity,

we explicitly make the following remark.

Remark 2.4.18. When we state that a graded R[x]-module M is a free graded module, we mean that M is

both a graded module and a free R[x]-module, i.e. M has a basis that is not necessarily homogeneous. In this

paper, if M has a homogeneous basis, we do not use the term graded-free for M to avoid ambiguity.
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Section 2.5. The Equivalence between Persistence Modules and Graded Modules

In this section, we discuss the isomorphism of categories between the category PersF of persistence modules over

F (see Definition 2.2.1) and the category GrModF[x] of N0-graded F[x]-modules (see Theorem 2.4.6). We also

discuss how this isomorphism allows us to correspond the algebraic constructions in PersF (e.g. direct sums,

persistence isomorphisms, chain complexes) to those in GrModF[x].

Before we begin, we want to emphasize that the results presented in this section rely heavily on concepts

involving category theory and homological algebra, and proofs for said results are not provided in the following

discussion. Since we mainly need to use the results in this section for the calculation of persistent homology,

it should suffice to know the definitions involving categories and functors presented in Appendix A4 and the

following definition for an isomorphism of categories:

Given two categories C and D with identity functors idC : C→ C and idD : D→ D respectively,

an isomorphism of categories or category isomorphism between C and D refers to a pair

of functors F : C→ D and G : D→ C such that G ◦ F = idC and F ◦G = idD [Rie16, p20].

Roughly speaking, the functors F and G describe a bijective correspondence between the objects and morphisms

of C and those of D respectively.

Remark. An equivalence of categories or a category equivalence between categories C and D refers to a pair of

functors F : C→ D and G : D→ C such that there exists a natural isomorphism between the functors

G ◦ F and idC and another between F ◦G and idD. The existence of these natural isomorphisms is

usually denoted by G ◦ F ∼= idC and F ◦G ∼= idD.

We point this out since [ZC05, Theorem 3.1] claims the existence of an equivalence of categories

between PersF and GrModF[x]. For our discussion, it should suffice to know that the existence of an

isomorphism of categories is a stronger requirement than that of an equivalence of categories, i.e. a

category isomorphism implies a category equivalence but the converse is not generally true, and that

the results we present below also apply for the weaker case of category equivalence.

In this section, the isomorphism of categories between PersF and GrModF[x] is given by the functors

ΓGrMod : PersF → GrModF[x] (described in Definition 2.5.1) and ΓPers : GrModF[x] → PersF (described in

Definition 2.5.6). Then, we present the claim that ΓGrMod and ΓPers indeed determine an isomorphism of categories

in Theorem 2.5.9. Finally, the propositions following Theorem 2.5.9 describe the correspondence between

algebraic constructions.

We begin with a description of ΓGrMod : PersF → GrModF[x] below, adapted from [BM21, p8].

Definition 2.5.1. Fix a field F. Define ΓGrMod : PersF → GrModF[x] to be the following assignment of the

objects and morphisms of PersF to those of GrModF[x] respectively.

i. Object Assignment: Let (V•, α•) be a persistence module over F. Define ΓGrMod(V•, α•) = ΓGrMod(V•) to

be the graded F[x]-module given as follows:

ΓGrMod(V•)
Ab
=
⊕
t∈N0

Vtx
t =

{ ∞∑
t=0

vtx
t : vt ∈ Vt for all t ∈ N0

}

where only finitely many of the vt’s are nonzero for each element of ΓGrMod(V•). Let the action of F[x] on
ΓGrMod(V•) be given by xs · vtxt := αt+s,t(vt)x

s+t. Then, for each t ∈ N0, the homogeneous component

of ΓGrMod(V•, α•) of degree t is given exactly by Vtx
t.

ii. Morphism Assignment: Let φ• : (V•, α•) → (W•, γ•) be a persistence morphism between persistence

modules over F with φ• = (φt : Vt →Wt)t∈N0 . Define ΓGrMod(φ•) to be the graded F[x]-homomorphism
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ΓGrMod(φ•) : ΓGrMod(V•)→ ΓGrMod(W•) given by

∞∑
t=0

vtx
t 7−→

∞∑
t=0

φt(vt)x
t

Remarks. (1) The notation ΓGrMod is not standard or convention in persistence literature. We introduced this

notation since we had found that explicitly identifying the “conversion” of persistence modules

to graded modules to be helpful in understanding the theory.

On a less serious note, we chose uppercase gamma (Γ) since it looks like the letter T. In this

case, the notation ΓGrMod references the conversion of a persistence module to a graded module

in GrModF[x]. For contrast, [ZC05] denotes the functor corresponding to ΓGrMod simply as α

(lowercase alpha), i.e. they would write α(V•) instead of ΓGrMod(V•).

(2) The statement of ΓGrMod above follows Remark 2.4.9, where we explicitly include the power xt

on the notation for the elements of graded modules to identify the degree t ∈ N0. For contrast,

[ZC05] and [BM21] defines ΓGrMod(V•) as ΓGrMod(V•) :=
⊕

t∈N0
Vt, i.e. the summands are Vt

instead of Vtx
t. In this case, the direct sum of F-vector spaces is to be interpreted as an external

direct sum and the elements of ΓGrMod(V•) are N0-indexed tuples (v0, v1, . . .) with the entry at

index t ∈ N0 being an element of Vt.

The assignment ΓGrMod as denoted above determines a functor, as stated below.

Proposition 2.5.2. Fix a field F. The object and morphism assignment ΓGrMod by Definition 2.5.1 determines

a functor ΓGrMod : PersF → GrModF[x].

Remark. A brief discussion of the proof is available in [BM21, p8], which relies on the commutativity require-

ment on the structure maps of persistence modules (see Lemma 2.1.3) and on the linear maps of

persistence morphisms (see Definition 2.2.1(ii)).

One way to prove the proposition above involves verifying that the assignments are well-defined (in that,

they indeed produce graded modules and graded homomorphisms) and that the functorial axioms are satisfied

(see Definition A4.4(i-iv)). In the following discussion, we roughly explain why the object and morphism

assignment by ΓGrMod produces graded F[x]-modules and graded F[x]-module homomorphisms respectively.

About the Object Assignment of ΓGrMod(−): The construction of the graded F[x]-module by ΓGrMod(−), as
stated in Definition 2.5.1(i), can be understood to happen in three stages: Let V• = (V•, α•) be a persistence

module over some field F.

1. The statement ΓGrMod(V•)
Ab
=
⊕

t∈N0
Vtx

t first defines ΓGrMod(V•) as a (graded) F-vector space.

For each t ∈ N0, Vt is an F-vector space by assumption of (V•, α•) being a persistence module and

Vtx
t is a F-vector space given by the canonical linear isomorphism Vt → Vtx

t by v 7→ vxt for all v ∈ Vt.
Then, the direct sum

⊕∞
t=0 Vtx

t of F-vector spaces induces an action of F on the set
⊕∞

t=0 Vtx
t (as

discussed in Remark 2.4.9), making
⊕∞

t=0 Vtx
t an F-module, i.e. a F-vector space.

Note that the characterization of the elements of ΓGrMod(V•) as
∑∞
t=0 vtx

t refers to how we prefer

to interpret the elements of graded modules as formal sums of powers of xt with coefficients in Vt, per

Remark 2.4.9.

2. The assignments xs · vtxt = αt+s,t(vt)x
t+s determine the action of F[x] on ΓGrMod(V•) and makes

ΓGrMod(V•) a F[x]-module, not necessarily graded at this point.
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For clarity, let ⋆ : F[x] ×M → M with M := ΓGrMod(V•) be given by xs ⋆ vtx
t := αt+s,t(vt)x

t+s,

i.e. we denote the supposed action of F[x] on M by ⋆. Since αt+s,t(Vt) ⊆ Vt+s by definition of V• as a

persistence module, αt+s,t(vt)x
t+s ∈M .

Recall that, by Definition 2.4.1, an action of F[x] on ΓGrMod(V•) must be a biadditive group action.

Since the restriction of ⋆ onto F ×M → M describes the action of F on M and M has been shown to

be a F-vector space, it should suffice to show that for all t, s, r ∈ N0 and for all vt ∈ Vt,

xr ⋆ (xs ⋆ vtx
t) = (xr · xs) ⋆ vtxt

where · refers to the multiplication on F[x]. By Lemma 2.1.3, we have the commutativity relation

αt+s+r,t = αt+s+r,t+s ◦ αt+s,t (the structure maps of V• commute with each other). Then,

xr ⋆ (xs ⋆ vtx
t) = xr ⋆ αt+s,t(vt)x

t+s =
(
αt+s+r,t+s ◦ αt+s,t

)
(vt)x

t+s+r

= αt+s+r,t(vt)x
t+s+r = xs+r ⋆ vtx

t = (xr · xs) ⋆ vtxt

Therefore, ⋆ is a well-defined action of F[x] on M and M = ΓGrMod(V•) is a F[x]-module.

3. Finally, the specified domain and codomain of the structure maps αs,t : Vt → Vs of V• for each t ∈ N0

makes M = ΓGrMod(V•) a graded F[x]-module. More specifically, the relation αt+s,t(Vt) ⊆ Vt+s implies

that the action ⋆ of F[x] on M satisfies the following relation for all t, s ∈ N0:

Fxs ⋆ Vtxt = αt+s,t(Vt)x
t+s ⊆ Vt+sxt+s

This, together with the decomposition M =
⊕

t∈N0
Vtx

t, satisfies the conditions of Definition 2.4.3 and

determines that ΓGrMod(V•) is a graded F[x]-module with homogeneous component of degree t ∈ N0

given exactly by Vtx
t.

Recall that, by Proposition 2.1.4, the structure maps αs,t : Vt → Vs of V• are determined uniquely by the

collection {αt : Vt → Vt+1}t∈N0
. Similarly, we can unambiguously describe the action ⋆ of F[x] on ΓGrMod(V•)

using assignments of the following form:

x ⋆ vtx
t = αt(vt)x

t+1 for all vtx
t ∈ Vtxt ⊆ ΓGrMod(V•) with αt : Vt → Vt+1

As a sidenote, [ZC05] uses this simpler characterization to define the object assignment of the functor PersF →
GrModF[x]. We give an example of the object assignment of ΓGrMod in action below.

Example 2.5.3. Let (V•, α•) be a persistence module over Q with vector spaces given by Vt = Q⟨a⟩ and linear

maps αt : Vt → Vt+1 given by a 7→ a for all t ∈ N0. Then, the graded F[x]-module ΓGrMod(V•) is given by

ΓGrMod(V•)
Ab
=
⊕
t∈N0

Vtx
t =

⊕
t∈N0

Q⟨a⟩xt = Q[x]⟨a⟩

with the action of Q[x] on ΓGrMod(V•) given by x · axt = αt(a)x
t+1 = axt+1. Note that Q[x]⟨a⟩ is the free

F[x]-module generated by the indeterminate a with a interpreted to have degree 0. Since x · axt = axt+1, it can

verified that the map ΓGrMod(V•) → Q[x] by axt 7→ xt ∈ F[x] is a graded isomorphism. That is, ΓGrMod(V•) is

graded isomorphic to Q[x].

The graded isomorphism in the example above is relatively straightforward to determine since the chosen

bases for the vector spaces {Vt}t∈N0
are “compatible” with the structure maps and the ring operation in Q[x].

Here, we interpret a “compatible” choice to mean the following: given a persistence module (V•, α•), the

structure map αt : Vt → Vt+1 sends a basis element at of Vt to another basis element bt+1 of Vt+1 so that the
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action of F[x] on ΓGrMod(V•) is given by x · atxt 7→ bt+1x
t+1. Loosely speaking, the bases are chosen such that

multiplication by x on an element vxt of ΓGrMod(V•) changes the basis element and adds 1 to the power of xt.

We provide an example below where the immediate choice for bases is not “compatible” in this same sense.

Example 2.5.4. Let (W•, γ•) be a persistence module over Q with vector spaces given by Wt = Q⟨a⟩ and
linear maps γt : Wt → Wt+1 by a 7→ 2a for all t ∈ N0. Define M to be the graded Q[x]-module given by

M := ΓGrMod(W•). Then, M has the following underlying abelian group:

ΓGrMod(W•)
Ab
=
⊕
t∈N0

Wtx
t =

⊕
t∈N0

Q⟨a⟩xt = Q[x]⟨a⟩

For clarity, let ⋆ : Q[x]×M →M denote the action of Q[x] onM and let · refer to the usual scalar multiplication

on Q[x] given by x · kxt = kxt+1 for all k ∈ F and t ∈ N0. Then, ⋆ is given by x ⋆ γt(a)x
t = 2axt+1 and more

generally by xs ⋆ axt = 2saxt+1 for all t, s ∈ N0.

Define a map f : M → Q[x] by axt 7→ xt for all t ∈ N0. Note that f is only well-defined as a linear map

with M and Q[x] being seen as Q-vector spaces. In particular, the assignment axt 7→ xt fails to commute with

scalar multiplication over Q[x], i.e. x · f(axt) ̸= f(x ⋆ axt) for all t ∈ N0 since x · f(axt) = x · xt = xt+1 but

f(x ⋆ axt) = f(2axt+1) = 2xt+1.

In contrast, define the map g : M → Q[x] by axt 7→ 2−txt. Since {axt} and {2−txt} both serve as bases

for Q⟨a⟩xt and Qxt respectively, g is well-defined as a linear map between Q-vector spaces. Observe that for all

t ∈ N0, g(x ⋆ ax
t) = x · g(axt) since

g(x ⋆ axt) = g(2axt+1) = 2−(t+1) · 2xt+1 = 2−txt+1

x · g(axt) = x · 2−txt = 2−txt+1

Since the action ⋆ of F[x] commutes with g, g is also a Q[x]-module homomorphism. Since for all t ∈ N0,

g satisfies Qx ⋆ Q⟨a⟩xt ⊆ Q⟨a⟩xt+1, g is also a graded F[x]-module homomorphism. Since g has an obvious

inverse by xt 7→ 2taxt, M = ΓGrMod(W•) and Q[x] are graded isomorphic with graded isomorphism given by

g : M → Q[x]. Note that the graded isomorphism by g : M → Q[x] may be easier to see if we choose the basis

element bt := 2ta for the vector space Wt for each t ∈ N0.

About the Morphism Assignment of ΓGrMod(−): The construction of the graded F[x]-module homo-

morphism by ΓGrMod as stated in Definition 2.5.1(ii) can also be understood to happen in three stages. Let

(V•, α•) and (W•, γ•) be persistence modules over F. Let φ• : V• → W• be a persistence morphism with

φ• = (φt : Vt →Wt)t∈N0 .

1. At the level of F-modules, i.e. F-vector spaces:

For each t ∈ N0, φt : Vt → Wt must be a well-defined linear map between F-vector spaces Vt and
Wt by definition of persistence morphism. The canonical isomorphisms Vt → Vtx

t and Wt → Wtx
t

given by v 7→ vxt for v ∈ Vt and w 7→ wxt for w ∈ W respectively define the linear map φGr
t : Vtx

t →
Wtx

t given by vtx
t → φt(vt)x

t. Then, the (internal) direct sum operation on F-vector spaces induces

φGr : ΓGrMod(V•) → ΓGrMod(W•) to be a linear map φGr :
⊕

t∈N0
Vtx

t →
⊕

t∈N0
Wtx

t between (graded)

F-vector spaces given by φGr =
⊕

t∈N0
φGr
t .

2. At the level of F[x]-modules, not necessarily graded at this point:

For φGr to be a well-defined F[x]-module homomorphism, it must be shown that the action of F[x]
on both ΓGrMod(V•) and ΓGrMod(W•) commute with φGr. Since φGr is a well-defined linear map, it should
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suffice to check that the following is true:

φGr(xs ⋆V v) = xs ⋆W φGr(v) for all t, s ∈ N0 and v ∈ ΓGrMod(V•)

where ⋆V and ⋆W refer to the action of F[x] on ΓGrMod(V•) and ΓGrMod(W•) respectively. This condition

can be equivalently stated as follows:(
φt+s ◦ αt+s,t

)
(vt) =

(
γt+s,t ◦ φt

)
(vt) for all t, s ∈ N0 and for all vt ∈ Vt

Observe that, by Definition 2.2.1(ii), a persistence morphism φ• must form commuting squares with

the structure maps of V• and of W•, i.e. φt+s ◦ αt+s,t = γt+s,s ◦ φt for all t, s ∈ N0. Therefore,

φGr : ΓGrMod(V•)→ ΓGrMod(W•) is a well-defined F[x]-module homomorphism.

3. At the level of graded F[x]-modules:

Since φGr(Vtx
t) ⊆Wtx

t for all t ∈ N0 and Vtx
t and Wtx

t are exactly the homogeneous components

of ΓGrMod(V•) and ΓGrMod(W•) of degree t ∈ N0 respectively, φGr is also a well-defined graded F[x]-module

homomorphism.

We provide an example of the morphism assignment of ΓGrMod(−) below.

Example 2.5.5. Let (V•, α•) and (W•, α•) be persistence modules over Q with vector spaces given as follows

with distinct indeterminates a, b, and ab:

Vt =

{
0 if t < 5

Q⟨ab⟩ if t ≥ 5
and Wt =

{
0 if t < 2

Q⟨a, b⟩ if t ≥ 3

Define αt : Vt → Vt+1 by ab 7→ ab for all t ≥ 5 and γt : Wt → Wt+1 by a 7→ a and b 7→ b for all t ≥ 3. Let V Gr

and W Gr be graded Q[x]-modules given by V Gr := ΓGrMod(V•) and W Gr := ΓGrMod(W•). We claim that V Gr and

W Gr are graded isomorphic to the following:

V Gr
GrMod∼= Σ5Q[x]⟨ab⟩ = Q[x]

〈
abx5

〉
and W Gr

GrMod∼= Σ3Q[x]⟨a, b⟩ = Q[x]
〈
ax3, bx3

〉
where Σk refers to the upward shift in grading (see Definition 2.4.10). That is, the relation is valid at the level

of graded Q[x]-module homomorphisms and that the action of Q[x] on V Gr and W Gr is given by x · abxt = abxt

for all t ≥ 5 and x · axt = axt+1, x · bxt = bxt+1 for all t ≥ 3 respectively.

For each t ∈ N0, define φt : Vt → Wt to be the restriction of the map Φ : Q⟨ab⟩ → Q⟨a, b⟩ given by

ab 7→ b− a. We claim that φ• = (φt)t∈N0 defines a persistence morphism φ• : V• → W•. Let φGr : V Gr → W Gr

be the graded Q[x]-module homomorphism given by φGr := ΓGrMod(φ•). Then, for all t ∈ N0 with t ≥ 5:

φGr(abxt) = φt(ab)x
t = (b− a)xt

Observe that φGr sends homogeneous elements of V Gr of degree t ≥ 5 to homogeneous elements of W Gr of the

same degree. Note that V Gr has no homogeneous elements of degree t < 5.

Next, we provide a description of ΓPers : GrModF[x] → PersF below.

Definition 2.5.6. Fix a field F. Define ΓPers : GrModF[x] → PersF to be the following assignment of the objects

and morphisms of GrModF[x] to those of PersF respectively.

i. Object Assignment: Let M be a graded F[x]-module and let its homogeneous component be given by
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Mtx
t for some F-vector space Mt for all t ∈ N0. Then, M

Ab
=
⊕

t∈N0
Mtx

t.

Define ΓPers(M) =: (V•, α•) to be the persistence module over F such that for all t ∈ N0, the vector

space Vt is given by Vt :=Mt, and for all t, s ∈ N0 with t ≤ s, the structure map αs,t : Vt → Vs is given

by αs,t(vt) = vs whenever xs−t · vtxt = vsx
s with vs ∈Ms.

ii. Morphism Assignment: Let f : M → N be a graded F[x]-module homomorphism between graded

F[x]-modules M and N . Let the homogeneous component of M and N be given by Mtx
t and Ntx

t for

some F-vector spaces Mt and Nt for all t ∈ N0 respectively.

Define ΓPers(f) =: φ• to be the persistence morphism φ• : V• → W• between persistence morphisms

(V•, α•) := ΓPers(M) and (W•, γ•) := ΓPers(M) with φt : Vt → Wt given by φ(vt) := wt whenever

f(vtx
t) = wtx

t for all vt ∈ Vt and for all t ∈ N0.

Remarks. (1) As is the case of ΓGrMod, the notation ΓPers is not standard or convention in persistence literature.

In fact, notation for the functor GrModF[x] → PersF in the category isomorphism was not

explicitly identified in [ZC05].

(2) The graded modules and graded homomorphisms follow Remark 2.4.9, where xt is added to the

notation of the elements of graded modules to help identify the degree of homogeneous elements.

Proposition 2.5.7. Fix a field F. The object and morphism assignment ΓPers by Definition 2.5.6 determines a

functor ΓPers : PersF → GrModF[x].

Remark. A brief discussion of the proof is available in [BM21, p8].

Note that the arguments given for ΓGrMod producing well-defined graded modules and graded homomor-

phisms, when presented in reverse order, also tells us that application of ΓPers results in well-defined persistence

modules and persistence morphisms. We provide an example of ΓPers in action below.

Example 2.5.8. Let M be a graded Q[x]-module given as follows:

M
GrMod
= Σ4

(
Q[x]

/
Q[x]

〈
x5
〉)

Since (x5) = Q[x]
〈
x5
〉
is generated by a homogeneous element of Q[x], M must be a graded Q[x]-module by

Proposition 2.4.11. Let {Mt}t∈N0
be the family of Q-vector spaces such that M

Ab
=
⊕

t∈N0
Mtx

t and Mtx
t is the

homogeneous component of M of degree t ∈ N0 for all t ∈ N0. Then, Mt is given as follows:

Mtx
t =


0 if t < 4

Qxt if t ∈ {4, 5, . . . , 8} = [4, 9)

0 if t ≥ 9

That is, M consists of Q-linear combinations of x4, x5, x6, x7 and x8. The action of Q[x] on M is also given by

x · xt = xt+1 for all t ∈ {4, . . . , 8} and by x · x8 = 0.

Let (V•, α•) be the persistence module over Q given by (V•, α•) := ΓPers(M). Then, the vector spaces of

V• are given as follows:

Vt =


0 if t < 4

Q if t ∈ [4, 9)

0 if t ≥ 9
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For t ∈ {4, 5, . . . , 7}, the structure map αt : Vt → Vt+1 is given by Vt ∋ 1 7→ 1 ∈ Vt+1, i.e. αt = idQ. For

t = 8, the structure map α8 : V8 → V9 sends every vector in V8 to the zero vector in V9 = 0. For t ̸∈ [4, 9),

αt : Vt → Vt+1 is trivial since Vt = 0. Equivalently, we have that for all t, s ∈ N0 with t ≤ s:

αs,t =

{
idQ if t ∈ [4, 9)

0 otherwise

We claim that V• is isomorphic to the interval module I[4,9)• over Q as persistence modules.

As a sidenote, we can consider the elements ofM to be Q-linear combinations of xt with t ∈ [4, 9) since (x5)

being a graded submodule of Q[x] means that we can consider the homogeneous component of degree t ∈ N0

separately. More specifically: Let N = (x5). The homogeneous component Ntx
t of N is given by Ntx

t = Qxt

if t ≥ 5 and Ntx
t = 0 otherwise. Then, following Proposition 2.4.14,

Q[x]

(x5)

Ab
=
⊕
t∈N0

(
Qxt

Ntxt

)
=
⊕
t∈N0

(
Q
Nt

)
xt =

(
4⊕
t=0

(
Q
/
0
)
xt

)
⊕

( ∞⊕
t=5

(
Q
/
Q
)
xt

)
=

4⊕
t=0

Qxt

Note that we write
Ab
= since the direct sums only consider the action of F on the quotient module, not the action

of F[x]. Alternatively, since (x5) is a graded submodule, the quotient Q[x] / Q
〈
x5
〉
makes all Q-multiples of

powers xt with t ≥ 5 trivial and each coset of Q[x]/Q
〈
x5
〉
is represented uniquely by a Q-linear combination of

xt with t ∈ {1, . . . , 4}.

Finally, we state our theorem involving the isomorphism of categories between that of N0-indexed persis-

tence modules over F and N0-graded F[x]-modules.

Theorem 2.5.9. Fix a field F. The pair ΓGrMod and ΓPers determine an isomorphism of categories between the

category PersF of persistence modules over F and the category GrModF[x] on N0-graded F[x]-modules, i.e.

ΓPers ◦ ΓGrMod = idPersF and ΓGrMod ◦ ΓPers = idGrModF[x]

where idPersF and idGrModF[x]
denote the identity functors on PersF and GrModF[x] respectively. Note that this

also implies that ΓGrMod and ΓPers form an equivalence of categories.

Remarks. (1) This theorem is a special case of [BM21, Theorem 2.21] where PersF and GrModF[x] are denoted

as ModPR and GrP-ModR[U0] respectively with P = Poset(N0,≤), R = F, and F[x] = R[U0].

(2) A weaker version of this theorem is presented in [ZC05, Theorem 3.1], which only claims a

category equivalence between the subcategory of PersF limited to finite-type persistence modules

over F and the subcategory of GrModF[x] limited to finitely-generated graded F[x]-modules.

[ZC05] claims that the Artin-Rees theorem in commutative algebra is sufficient for the proof.

Alternatively, [CK18] provides a detailed proof of [ZC05, Theorem 3.1] (which it calls the

ZC Representation Theorem) without using the Artin-Rees theorem. A sketch of an alternative

proof that uses the Artin-Rees theorem is provided in [CK18, Appendix C].

About the Correspondence between Algebraic Constructions.

Theorem 2.5.9 is particularly significant in this paper since it allows us to correspond algebraic constructions

in PersF, i.e. involving persistence modules, to those in GrModF[x], i.e. involving graded modules. In the second

half of this section, we state the propositions that tell us which properties of the original persistence complex

page 68 of 169



are preserved as we go from the category of persistence modules, to that of graded modules, then back to that

of persistence modules.

We begin with a statement involving isomorphisms in PersF and GrModF[x].

Proposition 2.5.10. The functors ΓGrMod(−) and ΓPers(−) preserve and reflect isomorphisms, i.e.

i. A persistence morphism φ• : V• →W• between persistence modules V• and W• is a persistence isomor-

phism if and only if ΓGrMod(φ•) : ΓGrMod(V•)→ ΓGrMod(W•) is a graded F[x]-module isomorphism.

ii. A graded F[x]-module homomorphism f :M → N between graded F[x]-modules M and N is a graded

isomorphism if and only if ΓPers(f) : ΓPers(M)→ ΓPers(N) is a persistence isomorphism.

Proof. For part (i): For the forward direction, assume φ• : V• →W• is a persistence isomorphism. By [Rie16,

Lemma 1.3.8], which states that all functors preserve isomorphisms, ΓGrMod(φ•) : ΓGrMod(V•) →
ΓGrMod(W•) must be a graded F[x]-module isomorphism. For the converse, assume that ΓGrMod(φ•)

is a graded isomorphism. By Theorem 2.5.9, ΓPers ◦ ΓGrMod = idPersF and(
ΓPers ◦ ΓGrMod

)
(V•) = V•,

(
ΓPers ◦ ΓGrMod

)
(W•) =W•, and

(
ΓPers ◦ ΓGrMod

)
(φ•) = φ•.

By [Rie16, Lemma 1.3.8] on ΓPers(−), φ• must be a persistence isomorphism. A similar argument

applies for part (ii). ■

Remark. This results holds even if ΓGrMod(−) and ΓPers(−) only form an equivalence of categories since [Rie16,

Theorem 1.5.9] states that any functor defining an equivalence of categories is full and faithful and

[Rie16, Exercise 1.5.iv] states that full and faithful functors reflect isomorphisms.

Since a graded invariant factor decomposition of a graded module is given by a graded isomorphism,

Proposition 2.5.10 tells us that the application of ΓPers(−) on such a decomposition will produce a persistence

isomorphism. Moreover, we can show that this graded decomposition corresponds to an interval decomposition.

Below, we describe the relationship between interval modules and the cyclic summands of graded invariant

factor decompositions.

Lemma 2.5.11. Fix a field F. The interval persistence modules correspond to shifted cyclic graded F[x]-
modules, i.e. for all t, s ∈ N0,

I[s,∞)
• = ΓPers

(
ΣsF[x]

)
and I[s,s+t)• = ΓPers

(
Σs
(
F[x]

/
(xt)

))
where IJ• denotes the interval modules over the interval J ⊆ N0 (see Definition 2.3.1), Σs(−) denotes an upwards

s-shift in grading (see Definition 2.4.10) and (xt) = F[x]⟨xt⟩ is the graded F[x]-module generated by xt.

Proof. Let t, s ∈ N0. First, we want to show that I[s,∞)
• ∼= ΓPers(Σ

sF[x]). Note that ΣsF[x] = F[x]⟨xs⟩ is a

graded F[x]-module with homogeneous component given by Fxr if r ≥ 5 and trivial otherwise. The

action of F[x] on ΣsF[x] is given by x · xr = xr+1 for all r ≥ 5. Equivalently, xq−r · xr = xq for all

r, q ∈ [s,∞) with r ≤ q. Let (V•, α•) := ΓPers

(
ΣsF[x]

)
. For all r, q ∈ N0 with r ≤ q, the vector space

Vr and the structure map αq,r : Vr → Vq are given as follows:

Vr =

{
F if r ∈ [s,∞)

0 otherwise
and αq,r =

{
idF if r, q ∈ [s,∞)

0 otherwise

By Definition 2.3.1, V• = I[s,∞)
• .
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Next, we want to show that I[s,s+t)• = ΓPers(M) with M := Σs
(
F[x] / (xt)

)
. By Proposition

2.4.13, the homogeneous component of F[x] / (xt) of degree r ∈ N0 is given by the quotient of the

homogeneous component of F[x] of degree r by that of (xt) = F[x]⟨xt⟩. That is, the homogeneous

component Mrx
r of M of degree r ∈ N0 is as follows:

Mrx
r =


0 ∼= 0 if r ∈ [0, s)

Fxr/ 0 ∼= Fxr if r ∈ [s, s+ t)

Fxr/ Fxr ∼= 0 if r ∈ [s+ t,∞)

The action of F[x] on M is given by x · xr = xr+1 for r ∈ [s, s + t − 1) and by x · xs+t−1 = 0.

Equivalently, for all r, q ∈ N0 with r ≤ q, xq−r ·xr = xq if r, q ∈ [s, s+ t) and xq−r ·xr = 0 otherwise.

Let (V•, α•) := ΓPers(M). Then, the vector spaces Vr and structure maps αq,r : Vr → Vq of V• are

given as follows:

Vr =

{
F if r ∈ [s, s+ t)

0 otherwise
and αq,r =

{
idF if r, q ∈ [s, s+ t) with r ≤ q
0 otherwise

By Definition 2.3.1, V• = I[s,s+t)• . ■

Note that we can also determine the homogeneous component of degree r ∈ N0 of M := Σs
(
F[x]/(xt)

)
by

using Proposition 2.4.15 and distributing the upwards shift Σs(−) across the quotient, i.e.

Σs
(
F[x]
(xt)

)
GrMod∼=

ΣsF[x]
Σs(xt)

=
F[x]⟨xs⟩
F[x]⟨xt+s⟩

=
{
kxr ∈ F[x] : k ∈ F and r ∈ [s, s+ t)

}
More rigorously, any coset of M as a quotient module can be represented uniquely by F-linear combinations of

powers xr with r ∈ [s, s+ t). Following Remark 2.4.9, the only non-trivial homogeneous components of M are

those of degree r ∈ [s, s+ t) given exactly by Fxr.

To state the correspondence between graded invariant factor decompositions and interval decompositions

of persistence modules, we need the following result involving finite direct sums.

Proposition 2.5.12. The functors ΓGrMod(−) and ΓPers(−) distribute over finite direct sums, i.e. given persis-

tence modules V• and W• and graded F[x]-modules M and N ,

ΓGrMod(V• ⊕P W•)
GrMod∼= ΓGrMod(V•) ⊕G ΓGrMod(W•)

ΓPers(M ⊕G N)
Pers∼= ΓPers(N) ⊕P ΓPers(N)

where ⊕G refers to a direct sum of graded F[x]-modules and ⊕P refers to that of persistence modules.

Remark. This can be seen as a consequence ΓGrMod(−) and ΓPers(−) forming an equivalence of categories by

Theorem 2.5.9. We are unable to provide a proof of this (or a reference for such) at this moment but

we have outlined two possible arguments below.

1. We can use [Rie16, Lemma 3.3.6], which roughly states that an equivalence of categories preserves

all limits and colimits, as described in [Rie16, Chapter 3]. Then, as argued in the proof of [Rie16,

Proposition 4.5.10], direct sums and kernels in abelian categories are finite limits. Since ΓGrMod(−)
and ΓPers(−) form an equivalence of categories by Theorem 2.5.9, these must both preserve finite

direct sums.

2. Alternatively, we can use [Rie16, Proposition 4.4.5], which roughly states that any equivalence

of categories determine an adjoint equivalence (also see [Rie16, Footnote 37, p30]), and [Rie16,
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Corollary 4.5.11], which then implies that these functors are exact and additive.

Note that [Rie16] defines an additive functor to be a functor that preserves direct sums. In

contrast, [Rot88, Corollary 5.88] states this to be a property of additive functors. A more detailed

discussion on properties preserved by exact and additive functors can also be found in [Bai17]

with the above result given as part of [Bai17, Theorem 27].

We are unsure if the above arguments apply for arbitrary direct sums. However, this is not an issue

for us since arbitrary direct sums of persistence modules are not needed for the matrix reduction

algorithm for persistent homology.

Below, we state the correspondence between interval decompositions of persistence modules and graded

invariant factor decompositions of graded modules.

Corollary 2.5.13. Let (V•, α•) be a persistence module. Assume that M := ΓGrMod(V•) admits the following

graded invariant factor decomposition, as described in the Graded Structure Theorem (Theorem 4.3.1):

ΓGrMod(V•) =M
GrMod∼= Σs1

(
F[x]
(xt1)

)
⊕ · · · ⊕ Σsr

(
F[x]
(xtr )

)
⊕ Σsr+1F[x]⊕ · · · ⊕ ΣsmF[x]

with invariant factors {xt1 , . . . , xtr} and grading shifts {s1, . . . , sr, . . . , sm}. Then, V• admits the following

interval decomposition, as defined in Definition 2.3.4,

V• = ΓPers(M)
Pers∼= I[s1,s1+t1)• ⊕ · · · ⊕ I[sr,sr+tr)• ⊕ I[sr+1,∞)

• ⊕ · · · ⊕ I[sm,∞]
•

with persistence barcode given by Bar(V•) =
{
[s1, s1 + t1), . . . , [sr, sr + tr]

}
∪
{
[sr+1,∞), . . . , [sm,∞)

}
.

Proof. Proposition 2.5.10 implies that the graded isomorphism ofM to its graded invariant factor decompo-

sition determines a persistence isomorphism by application of ΓPers(−). Then, we distribute ΓPers(−)
over the graded decomposition using Proposition 2.5.12 and apply Lemma 2.5.11 to each cyclic sum-

mand. ■

The Graded Structure Theorem (Theorem 4.3.1) guarantees the existence of graded invariant factor decom-

positions for finitely generated graded F[x]-modules. This, along with Corollary 2.5.13, gives us a benchmark

for the existence of interval decompositions. We state this in more detail below.

Proposition 2.5.14. Let (V•, α) be a persistence module over F. If V• is a finite-type persistence module,

then ΓGrMod(V•) is a finitely generated graded F[x]-module and V• admits an interval decomposition.

Proof. Assume (V•, α•) is a finite-type persistence module. By Definition 2.1.6, the vector space Vt is finite

dimensional for all t ∈ N0 and V• is constant on [N,∞) for some N ∈ N0. For each t ∈ [0, N ], let Bt
be a basis of Vt. Let B :=

⋃N
t=0 Bt. Note that B is a finite set.

Let M := ΓGrMod(V•). By definition of ΓGrMod(−), the homogeneous component of M of degree

t ∈ N0 is given exactly by Vtx
t and the action of F[x] on M is given by xs ·vtxt = αs+t,t(vt)x

t+s with

αs+t,t : Vt → Vs+t for all vt ∈ Vt and t ∈ N0. Let t ∈ [0, N ]. Note that for all b ∈ Bt, bxt ∈ Vtxt ⊆M
by construction. Define Btxt := {bxt ∈M : b ∈ Bt} and BGr :=

⋃N
t=0 Btxt. We want to show that

BGr generates M , i.e. M = {f(x) · bxt : f(x) ∈ F[x], bxt ∈ BGr}.

Since M
Ab
=
⊕

t∈N0
Vtx

t, m =
∑
t∈N0

vtx
t for a unique set {vt}t∈N0

of elements vt ∈ Vt, only

finitely many of which are nonzero. Then, it suffices to check if each homogeneous component vtx
t

is generated by BGr. Let m = vtx
t ∈ Vtxt ⊆M for some t ∈ N0.
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1. Assume t ∈ [0, N ]. Since Bt is a basis of Vt by assumption, Btxt must also be a basis of Vtx
t,

viewing Vtx
t as an F-vector space. Therefore, there exists an F-linear combination in Btxt ⊆ BGr

that equals vtx
t.

2. Assume t ∈ [N + 1,∞). By assumption of V• being constant on [N,∞), the structure map

αt,N : VN → Vt must be an F-vector space isomorphism. Let vN ∈ VN such that αt,N (vN ) = vt.

Then, vNx
N ∈M and xt−N · vNxN = αt,N (vN )xt = vtx

t.

Therefore, any element m ∈ M is an F[x]-linear combination on BGr. Since M
Ab
=
⊕

t∈N0
Vtx

t by

definition, all F[x]-linear combinations on BGr must be on M . Then,

M = F[x]BGr =

{ ∞∑
t=0

ft(x) · btxt : ft(x) ∈ F[x] finitely many of which are nonzero and btx
t ∈ BGr

}

and B is a finite system of generators forM . Therefore, M is a finitely generated graded F[x]-module

and admits a graded invariant factor decomposition by the Graded Structure Theorem (Theorem

4.3.1). By Corollary 2.5.13, there exists an interval decomposition for V•. ■

Remark. If we consider functors of the form Poset(N0,≤) → ModZ to be persistence modules and let PersZ
be the corresponding functor category, we can modify Theorem 2.5.9 to state an isomorphism of

categories between PersZ and the category GrModZ[x] of N0-graded Z[x]-modules. However, while

the graded Z[x]-module constructed by applying ΓGrMod(−) to some finite-type persistence module

may be finitely generated, the Graded Structure Theorem still would not apply to said graded Z[x]-
module since Z[x] is not a PID. Therefore, we cannot use Proposition 2.5.14 for the existence of

interval decompositions for persistence modules of the form Poset(N0,≤)→ModZ.

Finally, we state how the chain homology of persistence modules and that of graded modules interact with

the equivalence of categories given by ΓGrMod(−) and ΓPers(−) below.

Proposition 2.5.15. The functors ΓGrMod and ΓPers preserve chain complexes and commute with the homology

functor, i.e. let HPers
n (−) : Ch-PersF → PersF denote the nth homology functor on persistence complexes and let

HGr
n (−) : Ch-GrModF[x] → GrModF[x] denote that on graded chain complexes. Then,

i. Let (V •
∗ , ∂

•
∗ ) = (V •

n , ∂
•
n)n∈Z be a persistence complex with persistence modules V •

n over F and persistence

morphisms ∂•
n : V •

n → V •
n−1. For all n ∈ Z, there exists a graded isomorphism such that

ΓGrMod

(
HPers
n

(
V •
∗ , ∂

•
∗
)) GrMod∼= HGr

n (M∗, d∗)

where (M∗, d∗) = (Mn, dn)n∈Z is the graded chain complex generated by component-wise application

of ΓGrMod(−) with Mn := ΓGrMod(V
•
n ) and dn :Mn →Mn−1 by dn := ΓGrMod(∂

•
n) for all n ∈ Z.

ii. Let (M∗, d∗) = (Mn, dn)n∈Z be a graded chain complex with graded F[x]-modules Mn and graded

homomorphisms dn :Mn →Mn−1. For all n ∈ Z, there exists a persistence isomorphism such that

ΓPers

(
HGr
n (M∗, d∗)

) Pers∼= HPers
n

(
V •
∗ , ∂

•
∗
)

where (V •
∗ , ∂

•
∗ ) = (V •

n , ∂
•
n)n∈Z is the persistence complex generated by component-wise application of

ΓPers, with V
•
n := ΓPers(Mn) and ∂

•
n := ΓPers(dn) for all n ∈ Z.

Remark. We are unable to provide a rigorous proof (or a reference for such) at this moment. However, if we

can claim that ΓGrMod(−) and ΓPers(−) are exact functors, following the remarks under Proposition
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2.5.12, then the above result is stated as part of [Bai17, Theorem 27]. A similar result is listed as

[Rot08, Exercise 6.8, p339], which claims that exact additive functors between categories of modules

over different rings commute with homology. We believe this applies more generally to exact additive

functors between abelian categories, as discussed on the introduction of [Rot88, Chapter 6].

We use the proposition above later in Section 3.3 in the context of simplicial homology.
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Chapter 3. Filtrations and Persistent Homology

Persistent homology theory is interested in the characterization, calculation, and representation of the persistent

homology of filtrations of topological spaces.

Generally speaking, a filtration refers to any collection {Ct : t ∈ Λ} of objects, indexed over some set Λ,

along with a set of subobject relations. The indexing set Λ is usually equipped with a partial order ≤ that

determines the expected set of subobject relations on {Ct : t ∈ Λ}, i.e. the subobject relation Ct ⊆ Cs is present
if and only if t ≤ s in the poset (Λ,≤). Then, the persistent homology of a filtration {Xt : t ∈ Λ} of topological
spaces Xt refers to some characterization of the following collections over all dimensions n ∈ N0:{

homology groups

Hn(Xt) : t ∈ Λ

}
and

{
maps on homology induced by inclusions

Hn(Xt)→ Hn(Xs) : t, s ∈ Λ with t ≤ s

}

In practice, the homology groups are taken with coefficients in a field F (usually F = Zp for prime p), and the

calculation of persistent homology is done at the level of ranks, i.e. we want to find the following quantities:{
rank

(
Hn(Xt;F)

)
: t ∈ Λ

}
and

{
rank

(
Hn(Xt;F)

i∗−−→Hn(Xs;F)
)
: t, s ∈ Λ with t ≤ s

}
These are then represented succinctly using a multiset of intervals in Λ (as a poset) called the persistence barcode

of the filtration, which is different albeit very similar to the persistence barcode of a persistence module.

In this chapter, we discuss the key ideas and constructions presented in the paper Computing Persistent

Homology [ZC05] by Afra Zomorodian and Gunnar Carlsson. In particular, we restrict our attention to N0-

indexed filtrations K• := {Kt}t∈N0
of (abstract) simplicial complexes Kt such that Kt ⊆ Kt+1 for all t ∈ N0

and study the following sequence of homology groups and induced maps:

Hn(K0;F)
i∗0−−−−−→Hn(K1;F)

i∗1−−−−−→Hn(K2;F)
i∗2−−−−−→Hn(K3;F)

i∗3−−−−−→· · ·

where it : Kt → Kt+1 denotes the inclusion map for all t ∈ N0. We discuss these notions relative to the

characterization of persistence modules presented in Chapter 2, i.e. as functors of the form Poset(N0,≤) →
VectF. This chapter is structured as follows:

Section 3.1. We characterize simplicial filtrations, i.e. filtrations of simplicial complexes, as functors of

the form K• : Poset(N0,≤) → A-Simp where A-Simp denotes the category of (abstract)

simplicial complexes and simplicial maps. We also discuss the notion of finite-type filtrations.

Section 3.2. We formalize the notion of the persistent homology of a simplicial filtration K• with coeffi-

cients in a field F by defining a persistence module over F called the nth persistent homology

module Hn(K•;F) : Poset(N0,≤)→ VectF for each dimension n ∈ Z.
We also identify a number of relevant terminology and interpretations involving Hn(K•;F),
and show that the interval decomposition of Hn(K•;F) exists assuming K• is a finite-type

filtration.

Section 3.3. We extend the simplicial chain complex of (abstract) simplicial complexes, as discussed in

Section 1.2, to the case of persistence modules and construct a chain complex of persistence

modules called the simplicial persistence complex C∗(K•;F) = (Cn(K•;F), ∂•
n)n∈Z. The n

th

chain homology of this persistence complex is then shown to be isomorphic to Hn(K•;F).
We also discuss how the isomorphism of categories between PersF and GrModF[x] discussed

in Section 2.5 allows us to calculate the nth chain homology of C∗(K•;F) at the level of

graded F[x]-modules. This will serve as the basis for the matrix reduction algorithm for

persistent homology, later discussed in Chapter 4.
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Section 3.1. Filtrations of Simplicial Complexes

In this section, we discuss specific N0-indexed collections of simplicial complexes {Kt}t∈N0
called filtrations and

provide a characterization of these as functors of the form Poset(N0,≤)→ A-Simp.

Definition 3.1.1. A simplicial filtration K• of a simplicial complex K is a functor K• : Poset(N0,≤) →
A-Simp with the following properties:

i. For all t ∈ N0, K•(t) is a subcomplex of K. For brevity, we often write Kt := K•(t), i.e. the bullet is

replaced with t ∈ N0. The index t ∈ N0 of the simplicial complex Kt in K• is sometimes called the

scale or parameter of Kt in K•.

ii. For all t, s ∈ N0 with t ≤ s, Kt is a subcomplex of Ks and K•(t→ s) : Kt → Ks is exactly the inclusion

map Kt ↪→ Ks. Let is,t : Kt → Ks and it : Kt → Kt+1 denote the inclusion maps is,t := K•(t → s)

and it := K•(t→ t+ 1) respectively.

iii. For each simplex σ ∈ K, there must exist t ∈ N0 such that σ is a simplex of Kt.

When the relation to a simplicial complex K is clear from context, we may say K• is a filtration of K for

brevity.

Remark. Condition (iii) above determines that each simplicial filtration K• corresponds to a unique simplicial

complex, i.e. K =
⋃
t∈N0

K•(t) =
⋃
t∈N0

Kt if K• is a filtration of K. It serves a similar purpose as

condition Definition 1.1.1(i) for simplicial complexes.

Let K• be a filtration of a simplicial complex K. Observe that the subcomplex relation Kt ⊆ Ks for all

t, s ∈ N0 with t ≤ s stated in Definition 3.1.1(ii) implies that for all t ∈ N0, Kt is a subcomplex of Kt+1.

Therefore, the simplicial filtration K• determines the following nested sequence of simplicial complexes:

K0 ⊆ K1 ⊆ K2 ⊆ K3 ⊆ K4 ⊆ · · ·

We can also show that increasing nested sequences of simplicial complexes determine simplicial filtrations, as

we expect it should. We state this in a proposition below.

Proposition 3.1.2. Let {Kt}t∈N0
be a collection of simplicial complexes such that Kt ⊆ Kt+1 for all t ∈ N0.

Then, {Kt}t∈N0
determines a filtration K• of the simplicial complex K :=

⋃
t∈N0

Kt by K•(t) := Kt.

Proof. Note that the union of simplicial complexes is a simplicial complex. Therefore, K is well-defined. For

each t ∈ N0, let K•(t) := Kt. Observe that Kt is a subcomplex of K. For all t, s ∈ N0 with t ≤ s,

define K•(t→ s) to be the inclusion map Kt ↪→ Ks, which exists since Kt ⊆ Ks by assumption.

Let t, r, s ∈ N0 such that t ≤ r ≤ s. Since the composition (Kt ↪→ Ks) ◦ (Ks ↪→ Kr) of inclusion

maps is exactly the inclusion Kt ↪→ Kr, the composition axiom as stated in Definition A4.4(iii)

is satisfied. Since the inclusion map Kt ↪→ Kt is exactly the identity map, the identity axiom as

stated in Definition A4.4(iv) is satisfied. Therefore, K• is a well-defined functor. The conditions of

Definition 3.1.1 are also all satisfied. ■

The subcomplex relations also allow us to characterize a simplicial filtrationK• by identifying the simplicial

complex K0 at index 0 ∈ N0 and specifying the collection {σt,i} of simplices that is appended to Kt−1 to form

Kt = Kt−1 ∪ {σt,i} for each t ≥ 1. Note that each Kt is required to be a simplicial complex by definition and

sequentially appending an arbitrary set of simplices to some simplicial complex L generally does not result in a

simplicial filtration. We provide an example of a simplicial filtration below.
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Example 3.1.3. Let the simplicial complex K with vertex set Vert(K) = {a, b, c, d} and let the filtration K•
on K be given by the following illustrations:

The simplicial complexes Kt of K• can be described abstractly as follows, with the simplices of Kt written as

strings of vertices, following the remarks under Definition 1.1.1.

Kt =



{a, b} if t = 0

{a, b, c, ab} if t = 1

{a, b, c, ab, ac, bc} if t = 2

{a, b, c, d, ab, ac, bc, abc} if t = 3

{a, b, c, d, ab, ac, bc, ad, abc} if t ≥ 4

Note that the abstract description of Kt can be cumbersome to work with by hand, e.g. confirming that each

element corresponds to a simplicial complex and that the collection corresponds to a filtration can be become

tedious even for a relatively small number of simplices.

In the illustration below, we describe the filtration K• by specifying which simplices are added as we

increase the index t ∈ N0. In particular, for each t ∈ N0, the simplices colored in red are the simplices in Kt

that are not present in Kt−1, with K−1 interpreted to be ∅. These simplices are also listed in red below the

illustration of each Kt.

Observe that there are no simplices added to Kt for t ≥ 5.

We would like to point out that the subcomplex relations on the simplicial complexes of a filtration K•
can be seen as a total order on the set {Kt}t∈N0

induced by the total order on N0. That is, we can define a

total order ≤c on the set of simplicial complexes by defining K ≤c L if and only if K is a subcomplex of L.

Since functors with Poset(N0,≤) as the domain category can generally be represented using a sequence with

arrows (see discussion on poset categories in Appendix A4), we can interpret an arrow Kt → Ks to refer to the

subcomplex relation Kt ⊆ Ks, i.e.

K0

i0
−−→K1

i1
−−→K2

i2
−−→K3

i3
−−→· · · corresponds to K0 ⊆ K1 ⊆ K2 ⊆ K3 ⊆ · · ·

One consequence of this is the use of colloquial language when talking about filtrations. For example, going

up a filtration usually implies going from a simplicial complex Kt from some t ∈ N0 and then considering a

simplicial complex Ks at a higher index t < s.

Note that in most introductory literature for persistent homology, simplicial filtrations are generally rep-

resented using finite nested sequences. That is, filtrations are sometimes described to be finite collections
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{K0,K1, . . . ,KT } of simplicial complexes such that

K0 ⊆ K1 ⊆ K2 ⊆ · · · ⊆ KT

This motivates the following terminology.

Definition 3.1.4. Let K• be a simplicial filtration. We say that K• is constant on an interval I ⊆ N0 if

for all t, s ∈ I with t ≤ s, Kt = Ks. We say that K• is finite-type if Kt is a finite simplicial complex for all

t ∈ N0, and there exists T ∈ N0 such that K• is constant on [T,∞).

Note that these definitions mimic those of Definition 2.1.6, which defines the same terms for the case

of persistence modules. Observe that if K• is a finite-type filtration, then there can only be finitely many

distinct simplices in K•. As we will see in Section 3.3, this finite-type condition on filtrations implies that

the persistence modules constructed for simplicial persistent homology are also of finite-type. We provide an

example of a finite-type filtration below.

Example 3.1.5. The simplicial filtration K• defined in Example 3.1.3 is a finite-type filtration that is constant

on [4,∞). In other words, knowing that K• is constant on [4,∞), we can determine K• using only the following

illustrations of simplicial complexes:

The assumption that K• is constant on [4,∞) determines that for all t ≥ 5, Kt = K4.

In practice, simplicial filtrations are usually constructed to be filtrations on finite simplicial complexes.

Relative to Definition 3.1.1, we assume that a filtration described this way is constant on [T,∞). We provide

an example of this below.

Example 3.1.6. Given below is a copy of [ZC05, Figure 1], which describes a nested sequence of simplicial

complexesK0 ⊆ K1 ⊆ K2 ⊆ · · · ⊆ K5. Under each illustration of a simplicial complex, the index t ∈ {0, 1, . . . , 5}
in Kt is denoted on the bottom-left, and the list of simplices present in Kt but not on Kt−1 is on the bottom-

right (with K−1 := ∅). The 0-simplices in said list for each Kt are drawn with light red shaded circles, the

1-simplices with dashed lines, and the 2-simplices with light red shaded triangles.

Relative to Definition 3.1.1, this determines a filtration K• on the simplicial complex K := K5 with K•(t) = Kt

illustrated below for all t ∈ N0:
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Observe that K• is constant on [5,∞).

Filtrations on finite simplicial complexes are necessarily of finite-type. We state this in more detail below.

Lemma 3.1.7. Let K• be a filtration on a simplicial complex K. If K is a finite simplicial complex, then K•
is a finite-type filtration and there exists some T ∈ N0 such that K• is constant on [T,∞).

Proof. Assume that K is a finite simplicial complex and let K• be some filtration on K. For all t ∈ N0,

K•(t) = Kt must be a finite simplicial complex since Kt ⊆ K by Definition 3.1.1(i) and K is finite

by assumption.

Assume, for the sake of contradiction, that there does not exist T ∈ N0 such that K• is constant

on [T,∞). Let r0 = 0. For each t ≥ 1, let rt ∈ N0 be such that rt−1 ≤ rt and K•(rt−1) ̸= K•(rt).

Note that rt exists since K• cannot be constant on [rt−1,∞) by assumption. Since K•(rt−1) ⊆ K•(rt)

by Definition 3.1.1(ii), there exists a simplex σt ∈ K such that σt ∈ K•(rt) and σt ̸∈ K•(rt−1). This

inductive process constructs a collection {σ0, σ1, σ2, . . .} of simplices ofK such that each σt is distinct.

Since this process can continue indefinitely by assumption of the non-existence of T ∈ N0, we can

construct an infinite collection {σt}∞t=0 of distinct simplices of K. Since
⋃∞
t=0 σt ⊆ K, K must be

infinite. This contradicts the assumption that K is finite. ■

As a final remark, we want to point out that, like with persistence modules, the definition of a filtration

can be generalized to allow for any poset category to be the domain category. That is, we can define filtrations

to be functors of the form Poset(P,≤)→ A-Simp for any poset (P,≤).
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Section 3.2. The Persistent Homology of Filtrations

In this section, we define the persistent homology of filtrations in terms of persistence modules and discuss the

interval decompositions of persistence modules in the context of persistent homology. We start with a definition

of persistent homology of filtrations, adapted from [Bau21].

Definition 3.2.1. Let n ∈ Z. The nth persistent homology module Hn(K•;F) of a filtration K• with

coefficients in F is the persistence module Hn(K•;F) : Poset(N0,≤) → VectF given by the following functor

composition:

Hn(K•;F) := Hn(−;F) ◦K•

where Hn(−;F) : A-Simp → VectF denotes the nth simplicial homology functor with F coefficients. The nth

persistence barcode Barn(K•;F) of K• with coefficients in F is the persistence barcode of Hn(K;F•) as a

persistence module, i.e. Barn(K•;F) := Bar(Hn(K•;F)).

We have some remarks regarding the notation and terminology of the vector spaces and structure maps of

Hn(K•;F), taken as a persistence module, relative to our characterization of persistence modules by Definition

2.1.1.

1. Observe that Hn(K•;F) = Hn(Kt;F) for all t ∈ N0. This is consistent with the convention of replacing

the bullet (•) of a persistence module V• = (V•, α•) to denote the vector space Vt at index t ∈ N0. We

may also call the index t ∈ N0, in the context of Hn(K•;F) as a persistent homology module, as the

scale or parameter of Hn(Kt;F).

2. The structure maps of a filtration K•, as stated in Definition 3.1.1, are denoted as is,t : Kt → Ks.

Following the notation for the induced maps on homology, the structure maps of Hn(K•;F) are denoted
as is,t∗ : Hn(Kt;F) → Hn(Ks;F). Relative to the notation V• = (V•, α•) for an arbitrary persistence

module, Hn(K•;F) =
(
Hn(K•;F), i•∗

)
.

Since we may be dealing with homology classes in Hn(Kt;F) of Hn(K•;F) across different indices t ∈ N0, we

identify some alternative notation below.

Remark 3.2.2. Wemodify the coset notation for the homology classes to include the index t ∈ N0 as a subscript

when discussed in the context of Hn(K•;F), i.e. we write [σ]t to refer to the homology class [σ] ∈ Hn(Kt;F) as
an element of the vector space of Hn(K•;F) specifically at index t ∈ N0.

Note that σ in [σ]t ∈ Hn(Kt;F) denotes a cycle representative σ ∈ ker(∂ tn), with ∂
t
n : Cn(Kt;F)→ Cn−1(Kt;F)

referring to the nth simplicial boundary map of Kt.

Since we defined persistent homology modules using functor composition, we can interpret the persistent

homology module Hn(K•;F) to be calculated using simplicial homology first at each index t ∈ N0, and second

by assembling the resulting homology groups into a persistence module, i.e. we have two separate operations,

illustrated as follows:

Poset(N0,≤) A-Simp VectF

t Kt Hn(Kt;F)
(scale or index) (simplicial complex) (homology group)

filtration K• simplicial homology Hn(−;F)

As such, the terminology for simplicial complexes and simplicial homology also extends to the homology groups

of a persistent homology module at some specific index t ∈ N0.

Below, we provide an example of a persistent homology module of a filtration.
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Example 3.2.3. Let the simplicial complex K and the filtration K• on K be as illustrated below:

We consider the nth persistent homology module Hn(K•;Q) of K• with Q coefficients in all dimensions n ∈ N0.

Part A. Pointwise Calculation of Homology Groups with Rational Coefficients

We consider the chain groups Cn(Kt;Q) and boundary maps ∂ tn : Cn(Kt;Q)→ Cn−1(Kt;Q) of Kt at each

scale t ∈ N0 separately. Orient each simplicial complex Kt with the vertex order Vert(K) = (a, b, c, d) restricted

on Vert(Kt). Illustrated below is the induced orientation on the 1-simplices of K and those of Kt for all t ∈ N0:

For all n ∈ N0, the n
th homology group Hn(Kt;Q) of Kt with Q coefficients is then calculated as usual with

Hn(Kt;Q) = ker
(
∂ tn
) /

im
(
∂ tn+1

)
Observe that Hn(Kt;Q) is a Q-vector space for all n ∈ N0. Since Cn(Kt;Q) = 0 for all n ≥ 3, ker(∂ tn) = 0 and

Hn(Kt;Q) = 0 for all n ≥ 2. Then, H0(Kt;Q) and H1(Kt;Q) for all t ∈ N0 are as follows:

H0(Kt;Q) ∼=


Q⟨[a]0, [b]0⟩ if t = 0

Q⟨[a]1, [d]1⟩ if t = 1

Q⟨[a]t⟩ if t ≥ 2

and H1(Kt;Q) =



0 if t = 0, 1

Q⟨[ab+ bc+ cd− ad]2⟩ if t = 2

Q⟨[ab+ bc− ac]3, [ac+ cd− ad]3⟩ if t = 3

Q⟨[ac+ cd− ad]4⟩ if t = 4

0 if t ≥ 5

Part B. Interpretation of Homology Groups with Rational Coefficients

The interpretation of the homology classes of H0(Kt;Z) as corresponding to path components, see [Hat02,

Proposition 2.6, p109], also applies to homology in Q coefficients. Illustrated below are the path components of

Kt relating to basis elements of H0(Kt;Q) for all t ∈ N0.

Color Scheme for Path Components:

blue : that of [a]t ∈ H0(Kt;Q)

at all scales t ∈ N0

red : that of [b]0 ∈ H0(K0;Q)

only at scale t = 0

purple : that of [d]1 ∈ H0(K1;Q)

only at scale t = 1

The cycle representatives of H1(Kt;Z) correspond to directed loops in Kt, consisting of Z-multiples of ori-

ented 1-simplices. The same interpretation also applies to H1(Kt;Q) since we can scale any cycle representative
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such that it consists of Z-multiples of oriented 1-simplices. Illustrated below are the loops in Kt with t = 2, 3, 4

corresponding to homology classes in H1(Kt;Q):

Color Scheme for Directed Loops:

red : α := ab+ bc+ cd− ad , representing [α]t ∈ H1(Kt;Q) for

t ≥ 2. Note that [α]t = 0 if t ≥ 5.

green : τ := ab+ bc− ac , representing [τ ]t ∈ H1(Kt;Q) for t ≥ 3.

Note that [τ ]t = 0 if t ≥ 4.

orange : σ := ac+ cd− ad , representing [σ]t ∈ H1(Kt;Q) for t ≥ 3.

Note that [σ]t = 0 if t ≥ 5 and that [α]3 = [τ ]3 + [σ]3.

Negative multiples of oriented 1-simplices denote a reversal in direction. For example, ad ∈ C1(K2;Z) is a line

from vertex a to vertex d but −ad ∈ C1(K2;Z) is a line from d to a. The addition of an oriented 1-simplex to an

oppositely oriented copy of itself can be interpreted to be an annihilation of said simplex, e.g. ad+ (−ad) = 0.

Part C. Formation of Persistent Homology Modules

Let n ∈ N0. The nth persistent homology module Hn(K•;Q) has vector spaces given by Hn(K•;Q)(t) =

Hn(Kt;Q) for all t ∈ N0. The structure maps of Hn(K•;Q) are the maps on homology induced by inclusions

is,t : Kt → Ks for all t, s ∈ N0 with t ≤ s. For now, it suffices to know that these structure maps exist.

Observe that Hn(K•;Q) is the trivial persistence module over Q for n ≥ 2 since Hn(Kt;Q) = 0 for all

t ∈ N0. We talk more about H0(K•;Q) and H1(K•;Q) in the following examples in this section.

Remark 3.2.4. The preferred coefficient field for persistent homology is F = Zp with prime p. The majority

of the examples in this paper use F = Q for the coefficient field for convenience.

The reason for Zp being the preferred coefficient field is that numbers in Zp can be represented exactly

using a finite number of bits. For example, the Ripser package described in [Bau21] stores numbers in Zp as

unsigned 16-bit integers and allows for calculation of persistent homology in Zp coefficients with p ≤ 216 − 1.

Furthermore, a number in Z2 can be represented using one bit and arithmetic operations in Z2 can be done as

bit operations, which are extremely fast computationally. This explains why Cohen-Steiner, et al. in [CEM06]

and other authors (particularly those in the field of computer science) often define persistent homology with

coefficients in F = Z2, i.e. their persistence modules are of the form Poset(N0,≤)→ VectZ2
.

However, operations in Zp can be somewhat cumbersome to do by hand, which became an issue when we

were creating examples for this expository paper. As a compromise, we use the field F = Q for most of our

examples since the relation between homology groups over Q and those of Zp is relatively straightforward. For

reference, see [Hat02, Corollary 3A.6].

The persistence barcode of a persistence module, as discussed in Chapter 2, characterizes the ranks of the

vector spaces and the ranks of the structure maps of the persistence module. The same applies for persistent

homology modules, assuming interval decompositions and persistence barcodes exist. We state an existence

result below.

Proposition 3.2.5. Let K• be a filtration on a finite simplicial complex K and fix a field F. For each n ∈ N0,

the nth persistent homology module Hn(K•;F) is of finite-type and therefore admits an interval decomposition.

Proof. By Lemma 3.1.7, Kt is a finite simplicial complex for all t ∈ N0 and there exists T ∈ N0 such

that K• is constant on [T,∞). For t ∈ [0, T ], Hn(Kt;F) must be finitely generated since Kt is a
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finite simplicial complex. For all t ∈ [T,∞), Hn(KT ;F) = Hn(Kt;F) since KT = Kt. Therefore,

Hn(K•;F) is a finite-type persistence module that is constant on [T,∞). By Proposition 2.5.14,

Hn(K•;F) admits an interval decomposition. ■

The calculation of this interval decomposition is the goal of the matrix reduction algorithm for persistent

homology. Below, we identify terminology used in [Bau21] and other persistent homology literature involving

these interval decompositions.

Definition 3.2.6. Let K• be a filtration on a finite simplicial complex K. Let the persistence barcode

Barn(K•;F) of the nth persistent homology module Hn(K•;F) of K• with coefficients in a field F be given

as follows:

Barn(K•;F) = Bar
(
Hn(K•;F)

)
=
{
[bj , dj)

}r
j=1
∪
{
[ai,∞)

}m
i=1

where {[bj , dj)}rj=1 and {[ai,∞)}mi=1 both consist of intervals in N0 with bj , dj , ai ∈ N0.

i. The pair (bj , dj) of indices from the interval [bj , dj) is called an index persistence pair of K•. In this

case, bj is called a birth index and dj is called its corresponding death index.

ii. The index ai in the interval [ai,∞) is called an essential birth index or essential index of K•.

By Theorem 2.3.5, persistence barcodes of persistence modules are unique up to persistence isomorphism.

Therefore, the collection of index persistence pairs and essential indices from Hn(K•;F) can be considered an

invariant of the isomorphism type of persistence modules.

As briefly discussed in Section 3.1, it seems to be common practice to assume the index t ∈ N0 represents

some time value. Roughly speaking, the terms birth index and death index correlate to how homology classes

are created (alternatively, born) or become trivial (alternatively, die or get destroyed) as we increase the time

parameter t ∈ N0. The term persistence then corresponds to how long a homology class that is born at some

index tB ∈ N0 remains non-trivial (alternatively, lives) as we increase the index t ≥ tB .

Then, the phrase “as we increase the time parameter” refers to the application of the structure map

is,t∗ : Hn(Kt;F) → Hn(Ks;F). We can also colloquially say that we are going up the filtration K• from time t

to time s ≥ t. To avoid ambiguity, we provide definitions for the terms such as lives, dies, and persists below.

Definition 3.2.7. Let K• be a simplicial filtration. Let [σ]t ∈ Hn(Kt;F) be a non-trivial homology class with

cycle representative σ ∈ ker(∂ tn) ⊆ Cn(Kt;F). Let s ∈ N0 such that t ≤ s.

i. We say that [σ]t lives or persists in Ks if is,t∗ ([σ]t) ̸= 0.

ii. If [τ ]t ∈ Hn(Kt;F) is a non-trivial homology class such that [τ ]t ̸= [σ]t and i
s,t
∗ ([σ]t) = is,t∗ ([τ ]t) ̸= 0, we

say that [τ ]t and [σ]t merge in Ks.

iii. We say that [σ]t is born in KB or at index B ∈ N0 if

B = max
{
b ∈ N0 : b ≤ t and [σ]t ̸∈ im

(
it,b−1
∗

)}
where im

(
it,−1
∗

)
is taken to be the trivial vector space.

iv. We say that [σ]t dies or is destroyed in KD or at index D ∈ N0 if

D = min
{
d ∈ N0 : t ≤ d and id,t∗ ([σ]t) = 0

}
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If such a minimum does not exist, then we say that [σ]t does not die in the filtration. Note that if

[σ]t is destroyed in KD, then i
s,t([σ]t) =

(
is,D ◦ iD,t

)
([σ]t) = is,D(0) = 0 for any s ≥ D.

v. We say that [σ]t has persistence or lifespan D − B ∈ N0 if [σ]t is born at index B ∈ N0 and dies at

index D ∈ N0. If [σ]t does not die in K•, then persistence is interpreted to be ∞.

We provide an example of these terms in use below, relative to the 0th persistent homology module.

Example 3.2.8. Let K• be as given in Example 3.2.3. For convenience, we copied the illustration involving

H0(Kt;Q) and the path components of Kt at each t ∈ N0 below:

Color Scheme for Path Components:

blue : that of [a]t ∈ H0(Kt;Q)

at all scales t ∈ N0

red : that of [b]0 ∈ H0(K0;Q)

only at scale t = 0

purple : that of [d]1 ∈ H0(K1;Q)

only at scale t = 1

We consider some 0th homology classes in H0(Kt;Q) for varying t ∈ N0 below.

1. The homology classes [a]0, [b]0 ∈ H0(K0;Q) persist to K2 since i2,0
(
[a]0
)
= [a]2 ̸= 0 and i2,0

(
[b]0
)
=

[b]2 ̸= 0. Moreover, [a]0 and [b]0 live or persist to Kt for all t ≥ 1. At index t = 0, [a]0 is highlighted

in blue and [b]0 in red in the illustration above.

2. The homology classes [a]0, [b]0 ∈ H0(K0;Q) merge in K1 since i1,0([a]0) = [a]1 = [b]1 = i1,0([b]0). That

is, the 0-cycles a and b represent distinct homology classes in K0 but represent the same homology class

in K1. Furthermore, for all t ≥ 1, [a]t and [b]t represent the same path component, highlighted in

blue in the illustration above.

3. The homology class [a]3 ∈ H0(K3;Q) is born in K0 since im(i3,0∗ ) = Q⟨[a]3⟩. Similarly, the homology

class [d]4 ∈ H0(K3;Q) is born inK0 since [d]4 = [a]4 = i4,0([a]0). These homology classes are highlighted

in blue in the illustration above.

4. The homology class [d]1 ∈ H0(K1;Q) , specifically at index t = 1 and highlighted in purple above, is

born at index t = 1 since im(i1,0∗ ) = Q⟨[a]1⟩ and [d]1 ̸= [a]1. Note that for all t ≥ 2, [d]t corresponds

to the path component highlighted in blue .

Observe that none of the homology classes listed above die in the filtration.

Let K• be a filtration on a simplicial complex K. Observe that, in dimension n = 0, a 0th homology class

in H0(Kt;F) for any t ∈ N0 cannot die in a filtration since path components do not disappear as we increase the

time parameter. If K is path connected, then all of these 0th homology classes merge into one homology class

at sufficiently high T ∈ N0. Persistence becomes more interesting in dimensions n ≥ 1 since it becomes possible

for homology classes to become trivial as we increase the time parameter. We provide an example below on

dimension n = 1.

Example 3.2.9. Let K• be as given in Example 3.2.3. For convenience, we copied the illustration involving

H0(Kt;Q) and directed loops in Kt below. Note that if t ̸∈ {2, 3, 4}, then H1(Kt;F) = 0.
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Color Scheme for Directed Loops:

red : α := ab+ bc+ cd− ad , representing [α]t ∈ H1(Kt;Q) for

t ≥ 2. Note that [α]t = 0 if t ≥ 5.

green : τ := ab+ bc− ac , representing [τ ]t ∈ H1(Kt;Q) for t ≥ 3.

Note that [τ ]t = 0 if t ≥ 4.

orange : σ := ac+ cd− ad , representing [σ]t ∈ H1(Kt;Q) for t ≥ 3.

Note that [σ]t = 0 if t ≥ 5 and that [α]3 = [τ ]3 + [σ]3.

We consider some 1st homology classes in H1(Kt;Q) with t ∈ {2, 3, 4} below.

1. [α]2 = [ab+ bc+ cd− ad]2 ∈ H1(K2;Q) at index t = 2 is born at index t = 2, dies at index t = 5, and

has a lifespan of 3. Illustrated below is the image of [α]2 on Hn(Kt;Q) for t = 3, 4.

Color Scheme:

red : α in K2, representing [α]2.

purple : α in K3 and K4, representing [α]3 and

[α]4 respectively.

2. [α]3 = [ab+ bc+ cd− ad]3 ∈ H1(K3;Q) at index t = 3 is born at index t = 2 since i3,2∗ ([α]2) = [α]3.

3. [α]4 = [ab + bc + cd − ad]4 ∈ H1(K4;Q) is born at index t = 3 since i4,3([σ]3) = [σ]4 = [α]4 with

σ = ac+ cd− ad, as illustrated below:

Color Scheme:

red : α in K4, representing [α]4.

orange : (middle) σ ∈ K4, representing [σ]4 = [α]4

(left) σ in K3, representing [σ]3.

4. [τ ]3 = [ab + bc − ac]3 ∈ H1(K3;Q) at index t = 3 is born at the same index t = 3. Since the 2-

simplex abc is added to K4, ∂
4
2(abc) = bc− ac+ ab = τ and τ becomes a 1-boundary in K4. Therefore,

i4,3([τ ]3) = [τ ]4 = 0 and [τ ]3 dies in K4.

5. [σ]3 ∈ H1(K3;Q) at index t = 3 is born at index t = 3, dies at index t = 5, and has persistence 5−3 = 2.

Let K• be a filtration on a finite simplicial complex K and assume that K• is constant on [T,∞). Note

that T ∈ N0 exists by Lemma 3.1.7 and that K = KT . The persistence barcode Barn(K•;F) of a filtration K•
with F coefficients determines the interval decomposition Hn(K•;F) as a persistence module. Let Barn(K•;F)
be given as follows

Barn(K•;F) = Bar
(
Hn(K•;F)

)
=
{
[s1, s1 + t1), . . . , [sr, sr + tr), [sr+1,∞), . . . , [sm,∞]

}
for some s1, . . . , sm ∈ N0 and t1, . . . , tr ∈ N0. The intervals [sj , sj + tj) and [sj ,∞) in Barn(K•;F) are denoted

following Corollary 2.5.13, where we state the correspondence between graded invariant factor decompositions

in GrModF[x] and interval decompositions in PersF. Therefore, there exists a persistence isomorphism as follows:

φ• : Hn(K•;F)→
(
I[s1,s1+t1)• ⊕ · · · ⊕ I[sr,sr+tr)• ⊕ I[sr+1,∞)

• ⊕ · · · ⊕ I[sm,∞)
•

)
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This persistence isomorphism identifies a collection of homology classes on varying indices t ∈ N0 by:

[σk]sk ∈ (φsk)
−1
(
IJk• (sk)

)
⊆ Hn(Ksk ;F) with Jk :=

{
[sk, sk + tk) if k ∈ {1, . . . , r}
[sk,∞) if k ∈ {r + 1, . . . ,m}

Note that (φsk)
−1
(
IJk• (sk)

)
must be a one-dimensional F-vector space and there exists a non-trivial homology

class [σk]sk for each k ∈ {1, . . . ,m}. The birth, death, and persistence of [σk]sk as a homology class in H0(K•;F)
correspond to the indices in the intervals [sk, sk + tk) or [sk,∞). In particular:

1. For k ∈ {1, . . . , r}, the homology class [σk]sk from IJk• = I[sk,sk+tk)• is born at index sk, dies at index

sk + tk, and has persistence tk. Furthermore, the behavior of the structure maps match the interval

[sk, sk + tk), i.e.

it,sk∗
(
[σk]sk

)
=

{
[σk]t ̸= 0 if t ∈ [sk, sk + tk)

0 if t ≥ tk

Observe that the bounded interval [sk, sk + tk) corresponds to homology classes that become trivial in

K = KT , i.e. [σk]T = iT,sk([σk]sk) = 0 as an element of Hn(KT ;F) = Hn(KT ;F).

2. For k ∈ {r + 1, . . . ,m}, the homology class [σk]sk from IJk• = I[sk,∞)
• is born at index sk and does not

die in the filtration, i.e. for all t ≥ sk, it,sk∗
(
[σk]sk

)
= [σk]t ̸= 0.

Note that the unbounded intervals [sk,∞) correspond to homology classes that do not die in

K = KT , i.e. [σk]T = iT,sk([σk]sk) ̸= 0 in Hn(K;F) = Hn(KT ;F) for all k ∈ {r + 1, . . . ,m}. This might

explain why sk in the interval [sk,∞) is called an essential birth index of K•.

The problem here is that such a collection {[σ1]s1 , . . . , [σm]sm} of homology classes is not generally immediately

obvious by examination of the homology groups Hn(Kt;F) at every t ∈ N0 since the structure maps, i.e. the

maps on homology induced by inclusion, cannot be ignored.

The matrix reduction algorithm for persistent homology, discussed in Chapter 4, not only determines

the persistence barcode of Hn(K•;F) but also determines possible cycle representatives corresponding to each

interval in said barcode. In the two examples below, we interpret results that will be calculated in Chapter 4.

Example 3.2.10. Let K• be given as in Example 3.2.3. Given below is a summary of the results of the

calculation involving H0(K•;Q) started in Example 4.5.3 and finished in Example 4.5.8:

Interval Module Interval Birth Index Cycle Representative Persistence

I[0,1)• J1 = [0, 1) s1 = 0 σ1 = b− a t1 = 1− 0 = 1

I[1,2)• J2 = [1, 2) s2 = 1 σ2 = d− a t2 = 2− 1 = 1

I[0,∞)
• J3 = [0,∞) s3 = 0 σ3 = a t3 =∞

The interval decomposition of H0(K•;Q) is then calculated to be

H0(K•;Q)
Pers∼= I[0,∞)

• ⊕ I[0,1)• ⊕ I[1,2)•

Observe that each interval module IJk• corresponds to a homology class that is born at index sk and dies at

index sk + tk. However, these homology classes do not correspond directly to the path components of each Kt.

For comparison, we copied the illustration in Example 3.2.3 involving H0(K•;Q):
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Color Scheme for Path Components:

blue : that of [a]t ∈ H0(Kt;Q)

at all scales t ∈ N0

red : that of [b]0 ∈ H0(K0;Q)

only at scale t = 0

purple : that of [d]1 ∈ H0(K1;Q)

only at scale t = 1

Observe that I[0,∞)
• corresponds to the homology classes [a]t with t ∈ N0 and has a direct relation to the

path component of Kt containing the 0-cycle a. However, the same does not apply for I[0,1)• and I[1,2)• , which

correspond to the homology classes [b− a]0 and [d− a]1 respectively.

Example 3.2.11. Let K• be given as in Example 3.2.3. A summary of the results calculated in Example 4.6.1

involving the interval decomposition of H1(K•;Q) is given below:

Interval Module Interval Birth Index Cycle Representative Persistence

I[2,5)• J1 = [2, 5) s1 = 2 β1 = ab+ bc− ad+ cd t1 = 5− 2 = 3

I[3,4)• J2 = [3, 4) s2 = 3 β2 = −ab− bc+ ac t2 = 4− 3 = 1

The interval decomposition of H1(K•;Q) is given by H1(K•;Q) = I[2,5)• ⊕ I[3,4)• . For convenience, we copied the

illustration in Example 3.2.3 describing the orientation on the 1-simplices of Kt at each t ∈ N0 induced by the

vertex order Vert(K) = (a, b, c, d) below.

The first interval module I[2,5)• corresponds to the homology classes [β1]t with t ∈ [2, 5). Observe that the 1-cycle

β1 = ab+bc−ad+cd, illustrated in red below for t ∈ [2, 5), first appears at index s1 = 2. The 2-cycle abc+acd,

that makes β1 a 1-boundary and the homology class [β1]t trivial, first appears at index s1 + t1 = 2 + 3 = 5.

The second interval module I[3,4)• corresponds to the homology classes [β2]t with t ∈ [3, 4). Observe that the

1-cycle β2 = −ab− bc+ ac, illustrated below in purple for t ∈ [3, 4), first appears at s2 = 2. The 2-cycle −abc,
which makes β2 a 1-boundary and the homology class [β2]t trivial, first appears at index s2 + t2 = 4.
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Note that the 1-cycle ac + cd − ad is not represented in either interval module for H1(K•;Q), despite being a

valid cycle representative for homology classes in H1(Kt;Q) for t ≥ 3.

For the sake of completion, we include an alternate characterization for persistent homology below, one

that is prevalent in persistent homology literature, e.g. in [ZC05; CEM06]. While this perspective is not as

useful as the functor definition of persistent homology (Definition 3.2.1) for rigorously discussing the origins of

the matrix reduction algorithm (as presented in Chapter 4), it does offer some more insight to the significance

of persistence barcodes. The following definitions are taken from [ZC05, Section 2.6].

Definition 3.2.12. Let K• be a simplicial filtration and let F be a field. The p-persistent nth homology

group Hn(Kt; p;F) with coefficients in F of the simplicial complex Kt in K• is the F-vector space given by

Hn(Kt; p;F) = it+p,t∗

(
Hn(Kt;F)

)
⊆ Hn(Kt+p;F)

and the rank of Hn(Kt; p;F) is called the p-persistent nth Betti number βn(Kt; p;F) of Kt with coefficients

in F.

Observe that the characterization of persistent homology as a persistence module Hn(K•;F) by Definition

3.2.1 accounts for the p-persistent homology groups Hn(Kt; p;F) for all p, t ∈ N0 and is a more concise way to

describe how all of these homology groups are related. Furthermore, the persistence barcode Barn(K•;F) of a
filtration K• is a concise representation of the ranks of all p-persistent homology groups. In other words, the

persistence barcode encodes the evolution of the Betti numbers of Kt across the filtration K•. We state this in

more detail below.

Corollary 3.2.13. Let K• be a filtration on a finite simplicial complex K. For all n ∈ N0, the n
th Betti

numbers βn(Kt;F) of the simplicial complex Kt and the nth p-persistent Betti numbers βn(Kt; p;F) of Kt in

K• are determined by the persistence barcode Barn(K•;F) as follows:

βn(Kt;F) = card
{
J ∈ Barn(K•;F) : t ∈ J

}
βn(Kt; p;F) = card

{
J ∈ Barn(K•;F) : [t, t+ p] = [t, t+ p+ 1) ⊆ J

}
Proof. By Proposition 3.2.5, an interval decomposition for Hn(K•;F) exists. Applying Proposition 2.3.7 on

the F-vector space Hn(Kt;F) for all t ∈ N0, we have that

rank
(
Hn(Kt);F

)
= βn(Kt;F) = card

{
J ∈ Barn(K•;F) : t ∈ J

}
.

Applying Proposition 2.3.7 on structure maps it+p,t∗ of Hn(Kt;F) for all t, p ∈ N0, we have that

rank
(
it+p,t∗

)
= rank

(
it+p,t∗

(
Hn(Kt;F)

))
= rank

(
Hn(Kt; p;F)

)
= βn(Kt; p;F)
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= card
{
J ∈ Barn(K•;F) : [t, t+ p] = [t, t+ p+ 1) ⊆ J

}
. ■

Example 3.2.14. Let K• be given as in Example 3.2.3. For convenience, the illustration of the simplicial

complex K and the filtration K• is copied below:

Following the discussion on Example 3.2.10, the interval decomposition H0(K•;Q) ∼= I[0,1)• ⊕I[1,2)• ⊕I[0,∞)
• implies

that

Bar0(K•;Q) =
{
[0,∞), [0, 1), [1, 2)

}
Below, we compare the p-persistent 0th homology group H0(Kt; p;Q) and the p-persistent 0th Betti number

β0(Kt; p;Q) for selected p, t ∈ N0 and compare these against the results expected by Corollary 3.2.13.

1. Let t = 1. Since Kt = K1 has two path components, we expect β0(K1;Q) = 2. There are 2 intervals in

Bar0(K•;Q) that contain t = 1: [0,∞), [1, 2) ∈ Bar0(K•;Q).

2. Let t = 0 and p = 1. Since Kt = K0 has three path components and Kt+p = K1 has two path

components, we expect that H0(K0; 1;Q) ∼= Q2 and β0(K0; 1Q) = 2. Observe that there are 2 intervals

in Bar0(K•;Q) containing the interval [t, t+ p] = [0, 1]: [0,∞), [1, 2) ∈ Bar0(K•;Q).

3. Let t = 1 and p = 3. Since Kt = K1 has two path components and Kt+p = K4 has one path

component, we expect that H0(K1; 3;Q) ∼= Q and β0(K1; 3;Q) = 3. Observe that there is only 1

interval in Bar0(K•;Q) containing [t, t+ p] = [1, 4]: [0,∞) ∈ Bar0(K•;Q).
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Section 3.3. Simplicial Persistent Homology

In the previous section, we interpreted the nth persistent homology module Hn(K•;F) of a simplicial filtration

K• as done pointwise, with each index t ∈ N0 considered separately. In this section, we consider an approach

wherein we consider all indices t ∈ N0 of K• simultaneously. In particular, we extend the notions of simplicial

chain groups, boundary maps, and chain complexes to the case of persistence modules. For brevity, we will refer

to this extension as simplicial persistent homology.

We want to emphasize that the persistence modules and persistence complexes we introduce in this section

are not exactly new. Rather, they come as a natural consequence of the functorial nature of simplicial homology.

Earlier in Section 1.3, we discussed how the calculation of the simplicial homology can be seen as a composition

of functors, as illustrated below for the simplicial complex Kt of K•:

A-Simp Ch-VectF VectF

Kt C∗(Kt;F) =
(
Cn(Kt;R), ∂n

)
n∈Z Hn(Kt;F)

(simplicial complex) (simplicial chain complex) (simplicial homology)

C∗(−;R) Hn(−)

In simplicial persistent homology, we leave the parameter t ∈ N0 inK• arbitrary. We present a loose visualization

of this below, with the parts highlighted in red to be discussed in this section.

[Poset(N0,≤),A-Simp]
[Poset(N0,≤),Ch-VectF]

= Ch-PersF
[Poset(N0,≤),VectF] = PersF

K• C∗(K•;F) Hn(K•;F)

(filtration) (simplicial persistence complex?) (persistent homology module)

As we construct new objects in PersF, we also investigate the corresponding graded structures in GrModF[x]
resulting from the application of ΓGrMod : PersF → GrModF[x] to these objects and discuss which properties are

preserved under this category equivalence.

We start with a definition of filtered chain modules of simplicial filtrations, which are simplicial chain

groups extended to the case of persistence modules. Note that this definition is adapted from [Bau21].

Definition 3.3.1. Let K• be a filtration on a simplicial complex K and fix a field F. For each n ∈ Z, define
the nth filtered chain module Cn(K•;F) of K• with coefficients in F to be the persistence module over F
given by the following functor composition:

Cn(K•;F) := Cn(−;F) ◦K•

where Cn(−;F) : A-Simp→ VectF refers to the nth chain group functor with coefficients in F.

Remarks. (1) Cn(K•;F) is well-defined since the codomain category of K• : Poset(N0,≤) → A-Simp and

the domain category of Cn(−;F) : A-Simp → VectF match. Note that K• is a functor by

decomposition and Cn(−;F) is a well-defined functor as discussed above Definition 1.3.5.

(2) The modifier “filtered” implies that the chain groups are those from a simplicial filtration. We de-

cided to use the term “module”, instead of calling Cn(K•;F) a filtered chain group, to emphasize

that Cn(K•;F) is to be interpreted mainly as a persistence module.
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Observe that Cn(K•;F)(t) = Cn(Kt;F) for all t ∈ N0 and the notation involving the vector spaces of

Cn(K•;F) should work as expected. For example, passing the parameter t ∈ N0 to Cn(K•;F) returns the

simplicial chain group of Kt of K•. This is also consistent with the convention of writing Vt := V•(t) for an

arbitrary persistence module V•, as introduced in Definition 2.1.1.

As given in Definition 3.1.1, the inclusion maps of K• are denoted as is,t : Kt → Ks, with the shorthand

of it = it+1,t : Kt → Kt+1. Since the structure maps of Cn(K•;F) must be the maps on the simplicial chain

groups induced by inclusions, we can extend the hash (#) notation identified in Definition 1.3.3 and denote the

structure maps of Cn(K•;F) as follows:

is,t# = Cn(K•;F)(t→ s) with is,t# : Cn(Kt;F)→ Cn(Ks;F)

and it# = Cn(K•;F)(t→ t+ 1) with it# : Cn(Kt;F)→ Cn(Kt+1;F)

We provide an example of a filtered chain module below.

Example 3.3.2. Let K• and K be given as in Example 3.2.3 and orient K with the vertex order Vert(K) =

(a, b, c, d). For convenience, an illustration of K and K• (without orientation) is copied below:

The 0th and 1st filtered chain modules C0(K•;Q) and C0(K•;Q) of K• with rational coefficients have the

following vector spaces, described relative to their respective standard bases:

C0(Kt;Q) =

{
Q⟨a, b⟩ if t = 0

Q⟨a, b, c, d⟩ if t ≥ 1
and C1(Kt;Q) =


0 if t = 0

Q⟨ab, bc⟩ if t = 1

Q⟨ab, bc, cd, ad⟩ if t = 2

Q⟨ab, bc, cd, ad, ac⟩ if t ≥ 3

Below, we list some examples of 0-chains and 1-chains at selected values of t ∈ N0:

1. The 0-chain 2a+ b is an element of C0(Kt;Q) for all t ∈ N0. In contrast, the chain a+ 2b+ c is not an

element of C0(K0;Q) since the simplex c is not in K0.

2. The 1-chain ab + bc − ac first appears in C1(K3;Q), in that t = 3 is the minimal index for which

ab+ bc− ac ∈ C1(Kt;Q). Observe that ab+ bc− ac ∈ C1(Ks;Q) for any s ≥ 3.

3. The 1-chain 2ab − bc as an element of C1(K1;Q) is mapped to is,1# (2ab − bc) = 2ab − bc ∈ C1(Ks;Q)

for any s ≥ 1.

Given a filtration K• of a simplicial complex K, the vector spaces Cn(Kt;F) of the filtered chain module

Cn(K•;F) can all be considered subspaces of the simplicial chain group Cn(K;F) of K. Additionally, the

structure maps of Cn(K•;F) are all inclusions and agree with the identity map on Cn(K;F). We state this in

more detail below.

Corollary 3.3.3. Let K• be a filtration of some simplicial complex K. For all t, s ∈ N0 with t ≤ s,

Cn(Kt;F) is a vector subspace of Cn(K;F) and the structure map is,t# : Cn(Kt;F) → Cn(Ks;F) satisfies

is,t# (σ) = idCn(K;F)(σ) = σ for all σ ∈ Cn(Kt;F).
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Proof. Let t, s ∈ N0 with t ≤ s. By definition of K•, Kt ⊆ Ks ⊆ K. By Lemma 1.3.10(i), Cn(Kt;F) ⊆
Cn(Ks;F) ⊆ Cn(K;F) and for all n-chains σ ∈ Cn(Kt;F), is,t# (σ) = idCn(Ks;F)(σ) = i

[s]
# (σ) =

idCn(K;F)(σ) = σ where i[s] refers to the inclusion map i[s] : Ks → K. ■

The corollary above does not take any imposed orientation on either K or on any Kt of K• into account.

However, for convenient calculation, we usually set an orientation on K and let all simplicial complexes Kt of

K• inherit said orientation by restriction. In this case, the standard basis for any Cn(Kt;F) at index t ∈ N0

(relative to the inherited orientation) must be a subset of that of Cn(K;F). This property, along with the

corollary above, makes the graded module obtained by applying ΓGrMod to the filtered chain modules have a

relatively uncomplicated structure. Below, we identify notation for said graded module.

Definition 3.3.4. For each n ∈ Z, the nth graded chain module of a simplicial filtration K• with coefficients

in a field F is the graded F[x]-module given by CGr
n (K•;F) := ΓGrMod(CGr

n (K•;F)). We call an element of

Cn(K•;F) a filtered n-chain.

Remark. The term “graded chain module” is not used in most of the literature for persistent homology theory.

We introduced this term in this paper to emphasize the difference between Cn(K•;F) as a persistence

module and CGr
n (K•;F) as a graded module. The symbol CGr

n (K•;F) is added for brevity.

Following the description of ΓGrMod given in Definition 2.5.1, we have the following set description for the

graded chain module CGr
n (K•;F):

CGr
n (K•;F)

Ab
=
⊕
t∈N0

Cn(Kt;F)xt

Then, a filtered n-chain σ(x) ∈ CGr
n (K•;F) is an F[x]-formal sum σ(x) =

∑
t∈N0

σtx
t of n-chains such that

σt ∈ Cn(Kt;F), i.e. an n-chain at index t ∈ N0, for all t ∈ N0. Note that the direct sum characterization also

implies that only finitely many of σt can be non-trivial.

Observe that this formal sum notation for filtered n-chains makes identifying the homogeneity and degree of

elements in CGr
n (K•;F) straightforward. This becomes useful since we prefer dealing with homogeneous elements

of graded chain modules, as we will see later in Chapter 4. To avoid losing this benefit, we usually avoid using

the indeterminate x of F[x] as a vertex of the simplicial complex K.

Before we proceed with an example, we have identified two useful properties of CGr
n (K•;F) resulting from

Corollary 3.3.3 below.

Lemma 3.3.5. Let K• be a filtration of some simplicial complex K. Let n ∈ Z.

i. For all t ∈ N0, Cn(Kt;F)xt is a vector subspace of Cn(K;F)xt. Moreover, if a filtered n-chain is of the

form σxt ∈ CGr
n (K•;F) with σ ∈ Cn(K;F) and t ∈ N0, then σ ∈ Cn(Kt;F).

ii. The action of F[x] on CGr
n (K•;F) satisfies xs ·σxt = σxt+s for all σxt ∈ CGr

n (K•;F) and for all t, s ∈ N0.

Proof. For (i): Cn(Kt;F)xt ⊆ Cn(K;F)xt since Cn(Kt;F) is a vector subspace of Cn(K;F) by Corollary

3.3.3. Assume there exists σxt ∈ CGr
n (K•;F) with σ ∈ Cn(K;F) and t ∈ N0. We can assume, without

loss of generality, xt ̸∈ Cn(Ks;F) for all s ∈ N0. Therefore, σxt can only be present in Cn(Kt;F)xt,
the homogeneous component of CGr

n (K•;F) of degree t. Therefore, σ ∈ Cn(Kt;F).

For (ii): Let t, s ∈ N0 and let σxt ∈ CGr
n (K•;F). Then, σ ∈ Cn(Kt;F)xt. By definition of

ΓGrMod, x
s · σxt = it+s,s# (σ)xt+s. By Corollary 3.3.3, it+s,s# (σ)xt+s = σxt+s. ■

We provide an example of a filtered chain module viewed as a graded Q[x]-module below.
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Example 3.3.6. Let K and K• be as given in Example 3.2.3, illustrations of which are copied below for

convenience. Orient K and each Kt by (a, b, c, d), with the vertex set restricted when appropriate.

A description of the 0th graded chain module CGr
0 (K•;Q) of K• is given below. Note that the direct sums below

are to be interpreted as internal direct sums of Q-vector spaces.

CGr
0 (K•;Q) = ΓGrMod

(
C0(K•;Q)

) Ab
=
⊕
t∈N0

C0(Kt;Q)xt = Q⟨a, b⟩ ⊕

( ∞⊕
t=1

Q⟨a, b, c, d⟩xt
)

=

{
a · f1(x) + b · f2(x) + c · xf3(x) + d · xf4(x) : fi(x) ∈ Q[x] for i = 1, 2, 3, 4

}
Using Lemma 3.3.5, we know that the action of Q[x] on CGr

0 (K•;F) satisfies the following:

x · axt = axt+1 and x · bxt = bxt+1 for all t ∈ N0

x · cxt = cxt+1 and x · dxt = dxt+1 for all t ≥ 1

Listed below are some filtered 0-chains in CGr
0 (K•;Q), along with some comments.

1. The filtered 0-chain σ1(x) := 2ax+3bx3 corresponds to the pair of the 0-chain 2a ∈ C0(K1;Q) at index

1 and the 0-chain 3b ∈ C0(K3;Q) at index 3. Note that σ1(x) is not a homogeneous element since

degh(2ax) = 1 ̸= 3 = degh(3bx
3). In this case, degh(σ1(x)) is undefined.

2. The element c is not a filtered 0-chain of K• since c ̸∈ C0(K0;Q) = Q⟨a, b⟩. In contrast, for all t ≥ 1,

cxt ∈ CGr
0 (K•;Q) since c is a vertex in Kt.

3. The filtered 0-chain σ2(x) := (a + 2b − c)x4 corresponds to the 1-chain a + 2b − c as an element of

C0(K4;Q) at index 4 and degh(σ2(x)) = 4, i.e. σ2(x) is homogeneous of degree 4.

4. The filtered 0-chain a ∈ CGr
0 (K•;Q) generates the Q[x]-submodule Q[x]⟨a⟩ consisting of elements of the

form axt ∈ CGr
0 (K•;Q) with t ∈ N0. Observe that Q[x]⟨a⟩ is a graded submodule of CGr

0 (K•;Q).

Recall that simplicial chain groups Cn(K;R) with coefficients in a PID R are free R-modules. We have a

similar result for graded chain modules.

Proposition 3.3.7. Let K• be a simplicial filtration. For all n ∈ N0, CGr
n (K•;F) is free.

Proof. Let n ∈ Z. If n ≥ −1, then Cn(K•;F) is trivial and therefore free. Assume n ≥ 0. To determine that

CGr
n (K•;F) is free, it suffices to show that it is torsion-free as a F[x]-module. Let σxt ∈ CGr

n (K•;F).
Then, σ ∈ Cn(Kt;F). Note that CGr

n (K•;Q) is a F-vector space and is torsion-free. If xs ·σxt = 0 for

some s ∈ N0, then it+s,s# (σ) = 0, contradicting Lemma 3.3.5. Therefore, CGr
n (K•;F) is torsion-free

and, therefore, free. ■

Earlier in Definition 1.2.5, we identified a natural choice for basis on the chain groups of a simplicial complex

based on its equipped orientation. Similarly, if K• is a filtration on a simplicial complex K, an orientation on

K induces a natural choice of basis on its graded chain modules. We state this as a proposition below.
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Proposition 3.3.8. Let K• be a filtration of an oriented finite simplicial complex K. For each n ∈ N0,

CGr
n (K•;F) is free with the following homogeneous basis:

KGr
n :=

{
σ1x

t1 , σ2x
t2 , . . . , σmx

tm
}

with ti := min
{
t ∈ N0 : σi ∈ Cn(Kt;F)

}
for all i ∈ {1, . . . ,m} (E1)

where K[n] = {σ1, . . . , σm} is the standard basis of Cn(Kt;F) induced by the orientation on K (see Defn. 1.2.5).

Proof. Fix n ∈ N0. Since K is a finite simplicial complex, K[n] is finite with m := card(K[n]) <∞ and we

can label the oriented n-simplices inK[n] by {σ1, . . . , σn}. Let i ∈ {1, . . . ,m}. By Definition 3.1.1(iii),

there must exist some t ∈ N0 such that σi corresponds to an n-simplex in K and σi ∈ Cn(Kt;F).
Since N0 is bounded below, a minimal ti ∈ N0 for σi such that σi ∈ Cn(Kti ;F) must exist. Then,

σix
ti ∈ Cn(Kti ;F)xti ⊆ CGr

n (K•;F) is homogeneous with degree ti. Therefore, KGr
n , as given above,

is well-defined as a set.

Assume, without loss of generality, that t1 ≤ t2 ≤ · · · ≤ tm, i.e. KGr
n is indexed in order of

increasing degree. We need to show that KGr
n generates CGr

n (K•;F) and that KGr
n is F[x]-linearly

independent.

Fix t ∈ N0 and consider the vector subspace Cn(Kt;F)xt of CGr
n (K•;F). Let r ∈ {1, . . . ,m}

be maximum such that tr ≤ t. By minimality of the ti’s, σi corresponds to an n-simplex in Kt if

and only if i ∈ {1, . . . , p}. Let Kt inherit the orientation on K by restriction and let Kt[n] be the

standard basis of Cn(Kt;F) induced by this new orientation. Then, Kt[n] = {σ1, . . . , σp} and the

following set is a basis for Cn(Kt;F):

B(t) :=
{
σ1x

t, σ2x
t, . . . , σpx

t
}
=
{
xt−t1 · σ1xt1 , xt−t−2 · σ2xt2 , . . . , xt−tp · σrxtp

}
(E2)

Since t−ti ≥ 0 for each i ∈ {1, . . . , r}, each element in Cn(Kt;F) is equal to a F[x]-linear combination

in KGr
n . Since t ∈ N0 is arbitrary, KGr

n generates CGr
n (K•;F).

Consider the F[x]-linear dependence relation f(x) :=
∑m
i=1 fi·σixti = 0 for KGr

n with f1, . . . , fm ∈
F[x]. Recall that CGr

n (K•;F) =
⊕

t∈N0
Cn(Kt;F)xt. For each i ∈ {1, . . . ,m}, let {ki,t}t∈N0

be such

that fi(x) · σixti =
∑∞
t=0 ki,t · σixt with ki,t ∈ F for all t ∈ N0. Observe that, for all i ∈ {1, . . . ,m},

only finitely many {ki,t}t∈N0
are nonzero and ki,t = 0 if t < ti. Then, f(x) decomposes into

f(x) =

m∑
i=1

fi · σixti =
m∑
i=1

( ∞∑
t=0

ki,t · σixt
)

=

∞∑
t=0

(
m∑
i=1

ki,t · σixt
)

and the homogeneous component of f(x) of degree t ∈ N0 is given by
∑m
i=1 ki,t ·σixt. To solve linear

dependence relation f(x) = 0, it suffices to consider
∑m
i=1 ki,t · σixt = 0 separately for each t ∈ N0.

Let t ∈ N0. Observe that
∑m
i=1 ki,t · σixt ∈ Cn(Kt;F)xt is a F-linear combination in B(t), with B(t)

as defined in Equation (E2). Since B(t) is a basis for Cn(Kt;F)xt, k1,t = k2,t = · · · = km,t = 0. Since

t is arbitrary, ki,t = 0 for all t ∈ N0. Then, for each i ∈ {1, . . . ,m},

fi =

∞∑
t=0

ki,tx
t−ti =

∞∑
t=ti

ki,tx
t−ti =

∞∑
t=ti

0 · xt−ti = 0

Therefore, f1 = f2 = · · · = fn and KGr
n is F[x]-linearly independent.

Since KGr
n is F[x]-linearly independent, generates CGr

n (K•;F), and consists of homogeneous ele-

ments, KGr
n is a homogeneous F[x]-basis for CGr

n (K•;F). ■

In the example calculations presented later in Chapter 4, we often use the basis KGr
n as a starting point.
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For convenience, we provide a name for this basis below.

Definition 3.3.9. Let K• be a filtration of an oriented finite simplicial complex K. For each n ∈ N0, let KGr
n ,

as denoted in Proposition 3.3.8 and ordered first in increasing degree then by lexicographic order of the vertices

of K, be the standard ordered basis of CGr
n (K•;Q) induced by the orientation on K.

Remark. Other authors may use a different ordering e.g. [ZC05] orders KGr
n in decreasing degree instead. We

introduced the notion for standard ordered basis here for convenience, as we will deal with coordinate

matrices later in Chapter 4.

In the example below, we identify the basis KGr
n corresponding to the given graded chain modules.

Example 3.3.10. Let K and K• be as given in Example 3.2.3, illustrations of which are copied below for

convenience, and orient K by the vertex order (a, b, c, d).

Provided below are the ordered bases Kn for CGr
n (K•;Q) for n = 0, 1, 2, as described in Proposition 3.3.8.

KGr
0 = (a, b, cx, dx), KGr

1 = (abx, bcx, adx2, cdx2, acx3), KGr
2 = (abcx4, acdx5)

Therefore, we can describe CGr
n (K•;Q) for n = 0, 1, 2 as follows:

CGr
0 (K•;Q) = Q[x]

〈
a, b, cx, dx

〉
, C1 = Q[x]

〈
abx, bcx, adx2, cdx2, acx3

〉
, C2 = Q[x]

〈
abcx4, acdx5

〉
Standard ordered bases allow us to represent filtered n-chains using coordinate matrices and vectors. Following

the ordering of KGr
0 and KGr

1 denoted above, we listed some examples of these coordinate vectors below.

σ1 = 2ax+ 3bx3 = (a)(2x) + (b)(2x3) =⇒ [σ1] =

a 2x

b 3x3

cx 0

dx 0




σ2 = (ab+ bc− ac)x4

= (abx)(x3) + (bcx)(x) + (acx3)(−x)
=⇒ [σ2] =

abx 2x

bcx 3x3

adx2 0

cdx2 0

acx3 0





σ3 = (cd− ad+ ac)x5

= (adx2)(−x3) + (cdx2)(x3) + (acx3)(x2)
=⇒ [σ3] =

abx 0

bcx 0

adx2 −x3
cdx2 x3

acx3 x2




The functorial nature of the simplicial chain complex construction also allows us to extend the simplicial

boundary maps to the case of persistence modules. More specifically, the collection of simplicial boundary maps

form a persistence morphism between the filtered chain groups. We state this in more detail below.
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Corollary 3.3.11. Let K• be a simplicial filtration and let n ∈ Z. For each t ∈ N0, let ∂
t
n : Cn(Kt;F) →

Cn−1(Kt;F) be the nth simplicial boundary map of Kt. Then, the collection {∂ tn}t∈N0
determines a persistence

morphism ∂•
n : Cn(K•;F)→ Cn−1(K•;F).

Proof. Fix n ∈ N0 and let t, s ∈ N0 with t ≤ s. By Proposition 1.3.6, is,tn−1,# ◦ ∂tn = ∂sn ◦ i
s,t
n,# for all t, s ∈ N0

with t ≤ s with is,tn,# : Cn(Kt;F) → Cn(Ks;F) and is,tn−1,# : Cn−1(Kt;F) → Cn−1(Ks;F) referring to

structure maps of Cn(K•;F) and Cn−1(K•;F) respectively. That is, the following diagram commutes:

Cn(Kt;R) Cn−1(K;R)

Cn(Ks;R) Cn−1(L;R)

∂ tn

is,tn,# is,tn−1,#

∂sn

Therefore, ∂•
n = (∂ tn)t∈N0

is a persistence morphism by Definition 2.2.1. ■

We name these persistence morphisms, along with the corresponding graded homomorphism given by

application of ΓGrMod(−), below.

Definition 3.3.12. For each n ∈ Z, define the nth filtered boundary morphism ∂•
n of a simplicial fil-

tration K• to be the persistence morphism ∂•
n : Cn(K•;F) → Cn−1(K•;F) given by ∂•

n = (∂ tn)t∈N0 where

∂ tn : Cn(Kt;F)→ Cn−1(Kt;F) is the nth simplicial boundary map of Kt.

Definition 3.3.13. Let K• be a filtration of a simplicial complex. For each n ∈ Z, define the nth graded

boundary morphism ∂Gr
n of K• to be the graded F[x]-module homomorphism ∂Gr

n : CGr
n (K•;F)→ CGr

n−1(K•;F)
given by ∂Gr

n := ΓGrMod

(
∂•
n

)
. A filtered n-cycle is an element of ker(∂Gr

n ) and a filtered n-boundary that of

im(∂Gr
n+1). If K is oriented and finite, define the nth graded boundary matrix [∂Gr

n ] to be the matrix of ∂Gr
n

relative to the standard ordered bases Kn and Kn−1.

Below, we identify a useful characterization of filtered and graded boundary morphisms of a filtration K•
relative to the simplicial boundary morphism of a simplicial complex K.

Corollary 3.3.14. Let K• be a filtration of a simplicial complex K and let n ∈ N0.

i. For all t ∈ N0, ∂
t
n(σ) = ∂n(σ) for all σ ∈ Cn(Kt;F) and t ∈ N0.

ii. The nth graded boundary map satisfies ∂Gr
n

(
σ
)
=
∑∞
t=0 ∂n(σt)x

t for all σ =
∑∞
t=0 σtx

t ∈ Cn(K•;F).

Proof. Fix n ∈ N0. For (i): Since ∂•
n : Cn(K•;F) → Cn−1(K•;F) is a persistence morphism, we have that

for all t ∈ N0 and σ ∈ Cn(Kt;F),

∂ tn(σ) =
(
∂ tn ◦ i

[t]
n,#

)
(σ) =

(
i
[t]
n−1,# ◦ ∂n

)
(σ) =

(
idCn−1(Kt;F) ◦ ∂n

)
(σ) = ∂n(σ)

where i[t] : Kt → K refers to the inclusion map. For (ii): For all σ =
∑∞
t=0 σtx

t ∈ CGr
n (K•;F),

∂Gr
n (σ) = ∂n

( ∞∑
t=0

σtx
t

)
(⋆)
=

∞∑
t=0

∂ tn(σt)x
t =

∞∑
t=0

∂n(σt)x
t

with (⋆) given by definition of the morphism assignment of ΓGrMod. ■
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The corollary above tells us that, when evaluating filtered n-chains against graded boundary morphisms,

we can basically ignore the added xt in the notation and determine the boundary of an oriented n-simplex as

usual. We have an example below.

Example 3.3.15. Let K and K• be as given in Example 3.2.3 and equip K with the orientation by (a, b, c, d).

Let σ1 := (ab+ bc− ac)x4 ∈ CGr
1 (K•;Q). Then, σ1 is a filtered 1-cycle by the following calculation:

∂Gr
1 (σ1) = ∂Gr

1

(
(ab+ bc− ac)x4

)
= ∂1(ab+ bc− ac)x4 =

(
(b− a) + (c− b)− (c− a)

)
x4 = (0)x4 = 0

Additionally, σ1 is a filtered 1-boundary since σ1 ∈ im(∂Gr
2 ) by the following calculation:

∂Gr
2

(
abcx4

)
= ∂2(abc)x

4 =
(
bc− ac+ ab

)
x4 = σ1

Let σ2 := (ab + bc − ac)x3 ∈ CGr
1 (K•;Q). Then, ∂Gr

1 (σ2) = ∂1(ab + bc − ac)x3 = 0 and σ2 is a filtered 1-cycle.

However, σ2 is not a filtered 1-boundary since abc is not in K3 and abcx3 ̸∈ CGr
2 (K•;Q).

We need to verify that the Z-indexed collection of filtered chain modules Cn(K•;Q) and filtered boundary

morphisms ∂•
n : Cn(K•;Q) → Cn−1(K•;Q) does indeed determine a persistence complex. We also need to do

the same for the graded chain modules and graded boundary morphisms.

Proposition 3.3.16. Let K• be a simplicial filtration. Then, ∂•
n−1 ◦∂•

n = 0• and ∂Gr
n−1 ◦∂Gr

n = 0 for all n ∈ Z.

Proof. Fix n ∈ N0. For the persistence modules case: For all t ∈ N0, (∂
•
n−1 ◦∂•

n)t = ∂ tn−1 ◦∂ tn = 0 as F-linear
maps. Therefore, ∂•

n ◦ ∂•
n−1 = 0•, with 0• denoting the zero persistence morphism. For the graded

module case: For all σ =
∑∞
t=0 σtx

t ∈ CGr
n (K•;F), we have the following:

(
∂Gr
n−1 ◦ ∂Gr

n

)
(σ) = ∂Gr

n−1

( ∞∑
t=0

∂n(σt)x
t

)
=

∞∑
t=0

(
∂n−1 ◦ ∂n

)
xt =

∞∑
t=0

0 · xt = 0

Therefore, ∂Gr
n−1 ◦ ∂Gr

n = 0. ■

Now, we define the simplicial persistence complex of a simplicial filtration, along with its corresponding

chain complex of graded modules.

Definition 3.3.17. Define the simplicial persistence complex C∗(K•;F) and the simplicial graded chain

complex C∗(K•;F) of a simplicial filtration K• with coefficients in F as follows:

C∗(K•;F) :=
(
Cn(K•);F, ∂•

n

)
n∈Z

and CGr
∗ (K•;F) :=

(
CGr
n (K•);F, ∂Gr

n

)
n∈Z

The simplicial persistence complex C∗(K•;F) can be visualized as the following sequence of persistence

modules and persistence morphisms:

· · · Cn+1(K•;F) Cn(K•;F) Cn−1(K•;F) · · ·
∂•
n+2 ∂•

n+1 ∂•
n ∂•

n−1

The change in perspective from having the index t ∈ N0 of a filtration K• take precedence to that for the index

n ∈ N0 of the chain complex C∗ can be visualized using the following commutative diagram. In the diagram
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below, each row fixes the index t ∈ N0 of the filtration and represents the simplicial chain complex C∗(Kt;F)
of Kt. Similarly, each column fixes the dimension n ∈ Z and corresponds to a filtered chain module Cn(K•;F).
For clarity, we suppressed the index t in is,t# and highlighted the vector spaces of Cn+1(K•;F) in red , those

of Cn(K•;F) in blue , and Cn−1(K•;F) in green .

...
...

...

· · · Cn+1(Kt+1;F) Cn(Kt+1;F) Cn−1(Kt+1;F) · · ·

· · · Cn+1(Kt;F) Cn(Kt;F) Cn−1(Kt;F) · · ·

· · · Cn+1(Kt−1;F) Cn(Kt−1;F) Cn−1(Kt−1;F) · · ·

...
...

...

∂n+2 ∂n+1

i#

∂n

i#

∂n−1

i#

∂n+2 ∂n+1

i#

∂n

i#

∂n−1

i#

∂n+2 ∂n+1

i#

∂n

i#

∂n−1

i#

i# i# i#

Finally, we present the result that allows us to use both the simplicial persistence complex and the simplicial

graded complex in our calculations.

Proposition 3.3.18. Let K• be a simplicial filtration. For all n ∈ Z, we have that

Hn(K•;F) ∼= HPers
n

(
C∗(K•;F)

)
∼=
(
ΓPers ◦HGr

n

)(
CGr

∗ (K•;F)
)

as persistence modules over F

where HPers
n : Ch-PersF → PersF and HGr

n : Ch-GrModF[x] → GrModF[x] refer to the chain homology functors

on persistence complexes and graded chain complexes respectively.

Proof. Recall that Hn(−;F) = HPers
n ◦ C∗(−;F) as functors A-Simp→ VectF, where Hn(−;F) and C∗(−;F)

are the simplicial homology and simplicial chain complex functors respectively. Since functor com-

position is associative when defined, we have the following:

Hn(K•;F) = Hn(−;F)(K•) =
(
HPers
n ◦ C∗(−;F)

)
(K•) = HPers

n

(
C∗(K•;F)

)
As stated in Proposition 2.5.15, ΓGrMod and ΓPers preserve chain complexes and chain homology. In

particular, both functors commute with the chain homology functors. Then,

HPers
n ◦ C∗(K•;F) = idPersF ◦ HPers

n ◦ C∗(K•;F) = ΓPers ◦ ΓGrMod ◦ HPers
n ◦ C∗(K•;F)

= ΓPers

(
ΓGrMod ◦HPers

n ◦ C∗(K•;F)
)
= ΓPers

(
HGr
n ◦ ΓGrMod ◦ C∗(K•;F)

)
=
(
ΓPers ◦HGr

n

)(
CGr

∗ (K•;F)
)

■

The proposition above is a fundamental result behind the derivation of the matrix reduction algorithm for

persistent homology, as presented in [ZC05], since it allows us to calculate at the level of graded modules and

return back to that of persistence modules post-calculation. For convenience, we name the chain homology of

the graded persistence complex.
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Definition 3.3.19. For each n ∈ Z, define the nth graded homology module HGr
n (K•;F) with coefficients

in a field F of a simplicial filtration K• as HGr
n (K•;F) := Hn ◦ CGr

∗ (K•;F), i.e. the nth chain homology of the

simplicial graded chain complex.
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Chapter 4. Calculation by Matrices

The paper Calculating Persistent Homology [ZC05] by Afra Zomorodian and Gunnar Carlsson describes how

the matrix reduction algorithm for persistent homology is based on a method of calculating invariant factor

decompositions of finitely-generated F[x]-modules using matrices over F[x]. Certain assumptions on the F[x]-
modules in question allow this calculation to be simulated using matrices over F. In this chapter, we frame the

discussion in [ZC05] relative to the theoretical foundation established in the previous chapters.

Fix a field F and let K• be a simplicial filtration of a finite simplicial complex K. As established in Section

3.3, the nth persistent homology module Hn(K•;F) of K• with coefficients in F can be calculated using the

following persistence isomorphism relation:

Hn(K•;F) ∼=
(
ΓPers ◦Hn ◦ ΓGrMod

)(
C∗(K•;F)

)
where C∗(K•;F) = (Cm(K•;F); ∂•

m)m∈Z is the simplicial persistence complex of K•, Hn : Ch-GrModF[x] →
GrModF[x] is the n

th chain homology functor on graded chain complexes, and ΓGrMod : PersF → GrModF[x] and

ΓPers : GrModF[x] → PersF refer to the category equivalence discussed in Section 2.5.

Following the arguments in [ZC05], the matrix reduction algorithm for persistent homology calculates

persistent homology at the level of graded modules. In particular, the algorithm determines the graded invariant

factor decomposition of the following graded F[x]-module by matrix reduction:

HGr
n (K•;F) :=

(
Hn ◦ ΓGrMod

)(
C∗(K•;F)

)
The resulting decomposition then determines the interval decomposition of the persistence module Hn(K•;F),
similarly as in Lemma 2.5.11 and Corollary 2.5.13.

In this chapter, we take a more general view and explore how matrix reduction can be used to find graded

invariant factor decompositions of the nth chain homology of graded chain complexes. Let R be a PID and F
be a field. This chapter is structured as follows:

In Section 4.1. The Structure Theorem and Smith Normal Decompositions

We consider the Structure Theorem for Finitely Generated Modules over a PID R in the

category ModR, i.e. disregarding grading (if it exists), and discuss how invariant factor

decompositions of said modules can be calculated using presentations and a matrix factor-

ization called Smith Normal Decomposition (SND). Note that our examples in this section

use R = Z for comparison to the graded case in the later sections.

In Section 4.2. Matrix Calculation of Homology of Ungraded Chain Complexes

We consider chain complexes C∗ = (Cn, ∂n)n∈Z in Ch-ModR such that for all n ∈ Z, Cn is

a free R-module of finite-rank. For each n ∈ Z, we present an existence result involving the

existence of a decomposition of Cn into three free direct summands:

Cn ∼= Kfree
n ⊕Ktor

n ⊕
Cn

ker(∂n)

such that the free component and torsion component of Hn(C∗) are given by F(Hn(C∗)) ∼=
Kfree
n and T(Hn(C∗)) ∼= Ktor

n / im(∂n+1) respectively. We also discuss how these components

can be determined from specific SNDs of the matrices of the differentials ∂n+1 : Cn+1 → Cn
and ∂n : Cn → Cn−1.

In Section 4.3. The Graded Structure Theorem and SNDs in the Graded Case

We present the Graded Structure Theorem for Finitely-Generated F[x]-modules in the cat-

egory GrModF[x]. We also discuss how this theorem can be considered a special case of the
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Structure Theorem in ModF[x] and how the method of calculating invariant factor decompo-

sitions by SNDs, limited to graded presentations, can be used to find graded invariant factor

decompositions of graded F[x]-modules. For convenience, we use F = Q for our examples.

In Section 4.4. Matrix Reduction of Graded Matrices

We consider matrices of homomorphisms in graded presentations, which we call graded ma-

trices for brevity. We discuss how specific matrix operations, i.e. elementary permutations,

elementary dilations, and non-trivial elimination operations in matrices over F[x], preserve
the homogeneity of graded matrices.

We also consider the simplicial filtration K• presented in Example 3.2.3, i.e. that in [ZC05,

Figure 1]. An illustration of K• is copied below for convenience.

In particular, we perform matrix reduction on [∂Gr
1 ] and [∂Gr

2 ], the matrices of the graded

boundary maps ∂Gr
1 : CGr

1 (K•;Q) → CGr
0 (K•;Q) and ∂Gr

2 : CGr
2 (K•;Q) → CGr

1 (K•;Q) re-

spectively, and discuss why the homogeneity of said matrices are preserved after the listed

matrix operations.

In Section 4.5. An Ungraded SND Algorithm in the Graded Case

We present a general algorithm for finding SNDs of graded matrices, adapted from an algo-

rithm for finding SNDs of matrices over a PID R, and discuss why the SNDs resulting from

this algorithm can be used to determine graded invariant factor decompositions.

We also use this algorithm to determine the graded invariant factor decomposition of the

graded Q[x]-module CGr
0 (K•;Q) of K• and use said result, along with Lemma 2.5.11 and

Corollary 2.5.13, to determine the interval decomposition of the persistent homology module

C0(K•;Q) of K• in dimension n = 0.

In Section 4.6. Matrix Calculation of Homology of Graded Chain Complexes

We consider graded chain complexes C∗ = (Cn, ∂n)n∈Z in Ch-GrModF[x] such that Cn is a

free graded F[x]-module of finite rank. We briefly discuss why the decomposition of Cn into

the free summands Kfree
n , Ktor

n , and Cn / ker ∂n and how the method of finding ungraded

invariant factor decompositions of chain homology in Ch-ModF[x] extends to the graded case.

Some of the notation used involving matrices and matrix reduction are identified Appendix A2. In particular, we

bring emphasis to the elementary matrices E
[n]
swap(k1, k2), E

[n]
dilate(k, µ), and E

[n]
add(kj , ki ;α) ∈ GL(n,R) described

in Definition A2.5.
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Section 4.1. The Structure Theorem and Smith Normal Decompositions

The Structure Theorem for Finitely Generated Modules over a PID, which we call the Structure Theorem

in this paper for convenience, proves the existence and uniqueness of invariant factor decompositions of certain

modules. In this section, we discuss one of the proofs of the Structure Theorem, as presented in [DF03], and

how the method of calculating invariant factor decompositions can re-stated as a matrix calculation using a

matrix factorization called a Smith Normal Decomposition, defined later in this section in Definition 4.1.8. To

start, we provide a statement of the Structure Theorem below.

Theorem 4.1.1. The Structure Theorem for Finitely Generated Modules over a PID.

Let M be a finitely generated module over some PID R. There exists a set of invariant factors {di}ni=1 of

non-invertible elements di ∈ R with divisibility relation d1 | d2 | · · · | dn such that M is isomorphic to a direct

sum of cyclic modules as follows:

M ∼=
n⊕
i=1

R
/
(di) = R

/
(d1)⊕R

/
(d2)⊕ · · · ⊕R

/
(dn)

This direct sum is called the invariant factor decomposition of M and is unique up to isomorphism. The

invariant factors di are unique up to multiplication by units.

Remark. We refer to [DF03, Theorem 12.5] and [DF03, Theorem 12.9] for the proofs of the existence and

uniqueness claims respectively. Note that a key characteristic of a PID is that all of its ideals can be

generated by a single element. Given d ∈ R with R a PID, we write (d) to refer to the ideal generated

by d by (d) := Rd = {rd : r ∈ R}.

The divisibility relation d1
∣∣ d2 ∣∣ · · · ∣∣ dn on the invariant factors {di} in the Structure Theorem is sometimes

stated in terms of proper ideals, wherein each (di) must be a proper ideal of R, i.e. (di) ̸= R, and we have the

following decreasing sequence of ideals:

(d1) ⊇ (d2) ⊇ · · · ⊇ (dn)

Here, we use the term decreasing relative to the subset relation. Given a, b ∈ R such that a divides b, i.e. a
∣∣ b,

there must exist q ∈ R such that aq = b. Then, any element rb ∈ (b) with r ∈ R must also be in (ra) since

rb = r(aq) = (rq)a and rq ∈ R. Therefore, (b) ⊆ (a) or equivalently, (a) ⊇ (b).

Since the ideals (di) must be proper ideals, this means that the invariant factors di cannot be invertible.

More specifically, if a ∈ R is invertible, then (a) = (a−1a) = (1) = R where a−1 ∈ R refers to the multiplicative

inverse of a in R. If di ∈ R were invertible, then the summand R / (di) = R /R would be the trivial module

and, therefore, can be removed from the direct sum without invalidating the isomorphism.

We also want to emphasize that the Structure Theorem allows the invariant factors di to be zero. Note

that, relative to the decreasing sequence of ideals, this means that di = 0 would occur at the end of the sequence

since (0) ⊆ (a) for any a ∈ R. Consequently, some references prefer to only consider nonzero di’s for the

invariant factors and state Theorem 4.1.1 as follows:

M ∼= Rf ⊕R
/
(d1)⊕R

/
(d2)⊕ · · · ⊕R

/
(dr)

with f + r = n and di ̸= 0 for all i ∈ {1, . . . , r}. In this case, we call Rf the free component of M and f ∈ N0

the rank of M . We call the remaining part of the decomposition
⊕r

i=1R / (di) the torsion component of M .

We prefer the statement in Theorem 4.1.1 since it is more suitable with the matrix calculation we present in

this section.
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The proof for the existence of invariant factor decompositions presented in [DF03, Theorem 12.5] relies

on a system of generators and relations of a finitely generated module over a PID. We provide an alternate

characterization of these systems below.

Definition 4.1.2. A presentation of a module M over a PID R is an exact sequence

FS
φ
−−→FG

π
−−→M−→ 0

of free R-modules FS and FG with homomorphisms φ : FS → FG and π : FG → M . We call FG and FS
the module of generators and module of relations respectively. Given a basis A of FG and S of FS , we

call π(A) ⊆ M and (φ ◦ π)(S) ⊆ M a system of generators and relations for M respectively. A finite

presentation of M is a presentation wherein both FS and FG have finite rank.

When we say that a presentation ofM is given by φ : FS → FG and π : FG →M , we refer to the exact sequence

as given above.

Remark. We usually indicate that a presentation φ : FS → FG is finite by listing a finite basis S = (σ1, . . . , σn)

of FS and A = (α1, . . . , αm) of FG. Also, this notion of presentation is not generally compatible with

the notion of presentation of groups, particularly in the case of non-abelian groups.

In the proof presented in [DF03, Theorem 12.5], a presentation ofM is constructed using a set of generators

{a1, . . . , am} of M , which exists by assumption of M being finitely generated. Let {α1, . . . , αm} be a set of

indeterminates. Define the module of generators to be FG = R⟨α1, . . . , αm⟩ and the homomorphism π : FG →M

by αj 7→ aj for j ∈ {1, . . . ,m}, i.e. αj is essentially a relabeling of aj ∈ M . Note that we use different labels

for aj and αj since aj ∈ M may be a torsion element of M , i.e. there may exist r ∈ R such that r · aj = 0,

but αj ∈ FG cannot be since it is an element of the free R-module FG. Then, the following exact sequence is a

finite presentation for M :
FS

=

ker(π)
φ
−−→

FG

=

R⟨α1, . . . , αm⟩
π
−−→ M −−→ 0

where φ : ker(π) → R⟨α1, . . . , αm⟩ is taken to be the inclusion map. Since ker(π) is a submodule of a finitely

generated module over a PID, ker(π) must also be finitely generated. Note that this is not true in general if R

is not a PID. Then, ker(π) is a free module with finite basis, i.e. of finite rank. Then, the presentation above

determines M by the following isomorphism:

M
(1)
= im(π)

(⋆)∼= FG
/
ker(π)

(2)
= FG

/
im(φ)

where (⋆) is given by the first isomorphism theorem on π : FG → M , and (1) and (2) are both given by the

exactness of the sequence FS → FG →M → 0, i.e. im(π) = ker(M → 0) =M and ker(π) = im(φ) respectively.

Note that the homomorphism φ : FS → FG determines M up to isomorphism since M ∼= FG / im(φ).

Observe that this isomorphism holds true even if FS is not exactly ker(π), i.e. FS only needs to contain

ker(π) as a submodule, or if φ : FS → FG is not an inclusion map. That is, the isomorphism holds for arbitrary

presentations given by Definition 4.1.2. We discuss state this in more detail later in Proposition 4.1.5.

The next step in the proof of [DF03, Theorem 12.5] involves finding a basis on ker(π) and FG, as denoted

in Definition 4.1.2, of a presentation such that certain properties are fulfilled. The existence of such a basis is

guaranteed by the following theorem, taken from [DF03, Theorem 12.5].

Theorem 4.1.3. Invariant Factor Theorem for Submodules.

page 102 of 169



Let M be a free module over a PID R with rank(M) = m and let L be a submodule of M . Then, L is a

free submodule with rank(L) = r ≤ m and there exists a basis B = {β1, . . . , βm} of M and nonzero elements

d1, . . . , dr ∈ R with divisibility relation d1
∣∣ d2 ∣∣ · · · ∣∣ dr such that {d1β1, . . . , drβr} is a basis of L. Furthermore,

the elements d1, . . . , dr are unique up to multiplication by units.

Remark. For a proof of the existence and uniqueness claims, see [DF03, Theorem 12.4] and [DF03, Theorem

12.9] respectively.

With M and L as denoted in the theorem above, we have the following decompositions for M and L using

the bases {β1, . . . , βm} and {d1β1, . . . , drβr}:

M ∼= R⟨β1⟩ ⊕ · · · ⊕ R⟨βr⟩ ⊕ R⟨βr+1⟩ ⊕ · · · ⊕ R⟨βm⟩
L ∼= R⟨d1β1⟩ ⊕ · · · ⊕ R⟨drβr⟩

Note that the elements d1, . . . , dr ∈ R given by this theorem may still be invertible as elements of R, e.g.

dj = 1 for some j ∈ {1, . . . , r}. Observe that each basis element djβj of L is then associated with a unique

basis element βj of M . Since for each j ∈ {1, . . . , r}, R⟨djβj⟩ is a submodule of R⟨βj⟩, we can characterize the

quotient module M/L by considering each pair of R⟨βj⟩ and R⟨djβj⟩ as a torsion summand of M/L. We state

the result that allows us to do this below.

Lemma 4.1.4. Let M and N be modules over a ring R. Let A be a submodule of M and B that of N . Then,

M ⊕N
A⊕B

∼=
(
M

A

)
⊕
(
N

B

)

Proof. Let π1 : M → M / A and π2 : N → N / B be canonical quotient homomorphisms. Note that

ker(π1) = A, ker(π2) = B and that both π1 and π2 are surjective, i.e. im(π1) =M/A, im(π2) = N /B.

The direct sum of modules induces a homomorphism π = π1 ⊕ π2 as follows:

π :M ⊕N →
(
M
/
A
)
⊕
(
N
/
B
)

(m,n) 7→
(
π1(m), π2(n)

)
= (m+A,n+B)

Then, ker(π) = ker(π1) ⊕ ker(π2) = A ⊕ B and im(π) = im(π1) ⊕ im(π2) = (M /A) ⊕ (M /B). By

the first isomorphism theorem on π,

im(π) =

(
M

A

)
⊕
(
N

B

)
∼=
M ⊕N
ker(π)

=
M ⊕N
A⊕B

.

■

We then apply Theorem 4.1.3 on the image of a finite presentation of a finitely generated module over a

PID. Note that the basis from this theorem allows us to apply Lemma 4.1.4. We state this in more detail below.

Proposition 4.1.5. Let M be a finitely generated module over a PID R. Let φ : FS → FG and π : FG → M

correspond to a presentation ofM with rank(FS) = n and rank(FG) = m. Then, there exists a basis {β1, . . . , βm}
of FG and nonzero values d1, . . . , dr ∈ R with divisibility relation d1

∣∣ d2 ∣∣ · · · ∣∣ dr such that {d1β1, . . . , drβr} is
a basis for im(φ) and

M ∼=
FG

im(φ)
∼=
(

R⟨β1⟩
R⟨d1β1⟩

)
⊕ · · · ⊕

(
R⟨βr⟩
R⟨drβr⟩

)
⊕R⟨βr+1⟩ ⊕ · · · ⊕R⟨βm⟩
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Proof. Since images of module homomorphisms are submodules of the codomain, im(φ) is a submodule of

FG. Let the basis B = {β1, . . . , βm} of FG and nonzero elements d1, . . . , dr ∈ R be given by Theorem

4.1.3 on im(φ) =: L. Then, im(φ) ∼= R⟨d1β1⟩ ⊕ · · · ⊕ R⟨drβr⟩ and FG = R⟨β1⟩ ⊕ · · · ⊕ R⟨βm⟩.
Observe that for each j ∈ {1, . . . , r}, R⟨d1βj⟩ is a submodule of R⟨βj⟩. We apply Lemma 4.1.4 on

M ∼= FG / im(φ) as follows:

M ∼=
FG

im(φ)
∼=

R⟨β1⟩ ⊕ · · · ⊕R⟨βm⟩
R⟨d1β1⟩ ⊕ · · · ⊕R⟨βr⟩

∼=
R⟨β1⟩ ⊕ · · · ⊕R⟨βm⟩

R⟨d1β1⟩ ⊕ · · · ⊕R⟨drβr⟩ ⊕ 0⊕ · · · ⊕ 0︸ ︷︷ ︸
m−r times

∼=
(

R⟨β1⟩
R⟨d1β1⟩

)
⊕ · · · ⊕

(
R⟨βr⟩
R⟨drβr⟩

)
⊕
(
R⟨βr+1⟩

0

)
⊕ · · · ⊕

(
R⟨βm⟩

0

)
∼=
(

R⟨β1⟩
R⟨d1β1⟩

)
⊕ · · · ⊕

(
R⟨βr⟩
R⟨drβr⟩

)
⊕R⟨βr+1⟩ ⊕ · · · ⊕R⟨βm⟩

where the trivial R-module is denoted by 0. ■

Note that, in the statement of the Structure Theorem (Theorem 4.1.1), the invariant factors d1, . . . , dn
may include zero elements at the end of the sequence while the elements d1, . . . , dr, as denoted in Proposition

4.1.5, are defined to be nonzero. The notation does suggest that d1, . . . , dr are related to the invariant factors.

By Proposition 4.1.5, the module of generators FG has rank(FG) = m. The zero invariant factors correspond

to the free summands of M . Since R⟨0βj⟩ = {r(0βj) : r ∈ R} = {0} becomes trivial, we can define additional

elements dr+1, . . . , dm to be zero and present the decomposition from Proposition 4.1.5 as follows:

M ∼=
m⊕
j=1

(
R⟨βj⟩
djβj

)
=

(
R⟨β1⟩
R⟨d1β1⟩

)
⊕ · · · ⊕

(
R⟨βr⟩
R⟨drβr⟩

)
︸ ︷︷ ︸
either torsion R-modules or trivial

⊕
(

R⟨βr+1⟩
R⟨dr+1βr+1⟩

)
⊕ · · · ⊕

(
R⟨βm⟩
R⟨dmβm⟩

)
︸ ︷︷ ︸
these are free R-modules since dj = 0

This direct sum is then transformed into an invariant factor decomposition by replacing each summand into

either a copy of R or a cyclic ideal of R. We state the required isomorphisms for these below.

Lemma 4.1.6. Let R⟨a⟩ be a free module over a PID R with basis {a} and let d ∈ R be nonzero. Then,

R⟨a⟩ ∼= R. If d is invertible, then R⟨a⟩/R⟨da⟩ ∼= 0, i.e. the trivial module. Otherwise, R⟨a⟩/R⟨da⟩ ∼= R/(d).

Proof. Let f : R⟨a⟩ → R be given by a 7→ 1 where 1 ∈ R refers to the identity element of R. Observe that

f is a homomorphism with inverse r 7→ ra ∈ R⟨a⟩ for all r ∈ R. Then, f is an isomorphism and

R⟨a⟩ ∼= R. We then examine two cases below.

1. Assume that d ∈ R is invertible, i.e. there exists d−1 ∈ R such that d−1d = 1. Since R⟨da⟩ ⊆ R⟨a⟩,
it suffices to show R⟨da⟩ ⊆ R⟨a⟩ to claim that R⟨da⟩ = R⟨a⟩. Each element ra ∈ R⟨a⟩ with r ∈ R
is generated by s = d−1r in R⟨da⟩ as follows:

(s)(da) = (d−1r)(da) = d−1d(ra) = ra .

Note that PIDs are commutative by definition. Therefore, R⟨da⟩ = R⟨a⟩ and R⟨a⟩/R⟨da⟩ = 0.

2. Let π : R→ R/(d) be the canonical quotient map. By the 1st isomorphism theorem on (π ◦ f):

R
/
(d) = im(π ◦ f) ∼=

R⟨a⟩
ker(π ◦ f)

=
R⟨a⟩

{ra : r ∈ (d)}
=

R⟨a⟩
R⟨da⟩

.

■
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Then, by applying Lemma 4.1.6 to the direct sum resulting from Proposition 4.1.5 and removing the trivial

summands, we get an invariant factor decomposition of a module over a PID. Since the nonzero values d1, . . . , dr,

as denoted in Proposition 4.1.5, must satisfy the divisibility condition d1
∣∣ · · · ∣∣ dr, any invertible values must

occur at the beginning of the list. That is, we have some k such that 1 ≤ k ≤ r and the elements d1, . . . , dk are

invertible (contributing to trivial summands) and the elements dk+1, . . . , dr are not invertible. Then, we get an

invariant factor decomposition as follows:

trivial summands︷ ︸︸ ︷ torsion summands︷ ︸︸ ︷ free summands︷ ︸︸ ︷
M ∼=

(
R⟨β1⟩
R⟨d1β1⟩

)
⊕ · · · ⊕

(
R⟨βk⟩
R⟨dkβk⟩

)
⊕
(

R⟨βk+1⟩
R⟨dk+1βk+1⟩

)
⊕ · · · ⊕

(
R⟨βr⟩
R⟨drβr⟩

)
⊕ R⟨βr+1⟩ ⊕ · · · ⊕R⟨βm⟩

∼= (nothing in here) ⊕ R

(dk+1)
⊕ · · · ⊕ R

(dr)
⊕ R⊕ · · · ⊕R︸ ︷︷ ︸

f := m− r times

The matrix calculation for invariant factor decompositions essentially comes from re-stating the Invariant Factor

Theorem for Submodules (Theorem 4.1.3) in terms of matrices. We state this in more detail below.

Proposition 4.1.7. Let R be a PID. Let φ : N →M be an R-module homomorphism between free R-modules

N and N with rank(N) = n and rank(M) = m. Then, there exists a basis T = (τ1, . . . , τn) of N , a basis

B = (β1, . . . , βm) of M , and nonzero elements d1, . . . , dr ∈ R with r = rank(im(φ)) ≤ n and divisibility relation

d1
∣∣ d2 ∣∣ · · · ∣∣ dr such that

φ(τi) =

{
diβi if i ∈ {1, . . . , r}
0 if i ∈ {r + 1, . . . , n}

That is, the matrix [φ]B,T of φ relative to T and B is given by the following block matrix

[φ]B,T =

(
Dr 0

0 0

)
∈Mm,n(R) with Dr = diag(d1, . . . , dr) =


d1 0 · · · 0

0 d2 · · · 0
...

...
. . . 0

0 0 · · · dr


Furthermore, the elements d1, . . . , dr are unique by multiplication of units.

Proof. We provide an outline of the proof given for [AW92, Proposition 4.3.20] below.

Since im(φ) is a submodule ofM , the Invariant Factor Theorem for Submodules (Theorem 4.1.3)

applies. Let B = (β1, . . . , βm) be the basis of M and {d1, . . . , dr} with r ≤ m be the set of nonzero

elements given by Theorem 4.1.3. Then, {d1β1, . . . , drβr} is a basis for im(φ) and the divisibility

relation d1
∣∣ · · · ∣∣ dr is satisfied. Note that d1, . . . , dr are also unique up to multiplication by units.

For each i ∈ {1, . . . , r}, choose τi ∈ N such that φ(τi) = diβi. Note that N ∼= ker(φ) ⊕
(N / ker(φ)) and that {τ1, . . . , τr} is a basis of N / ker(φ). Since ker(φ) is a free submodule of

N with n = rank(kerφ) + r, there exists a basis {τr+1, . . . , τn} of ker(φ). One then proves that

{τ1, . . . , τr, τr+1, . . . , τn} is a basis of N by showing linear independence. Then, by construction,

φ(τi) = diβi if i ∈ {1, . . . , r} and φ(τi) = 0 otherwise.

The matrix representation follows from the definition of matrices of homomorphisms. For ref-

erence, see Definition A3.8 in Appendix A3. Let i ∈ {1, . . . , n} be a column index. By definition,
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coli([φ]B,T ) = [φ(τi)]B , i.e. the coordinate vector of φ(τi) relative to B. If i ∈ {1, . . . , r}:

[φ]B,T (j, i) = [φ(τi)]B(j) =

{
di if j = i

0 otherwise

If i ∈ {r + 1, . . . , n}, then coli([φ]B,T ) = [φ(τi)]B would be the zero column since φ(τi) = 0. ■

The proposition above is then used to prove the existence of Smith Normal Decompositions of matrices,

defined below. Note that this definition is taken from from [AW92, Section 5.3].

Definition 4.1.8. The Smith Normal Decomposition (SND) of a matrix A ∈ Mm,n(R) is a triple (U,D, V )

of matrices U ∈ GL(m,R), V ∈ GL(n,R), D ∈ Mm,n(R) such that

U−1AV = D =

(
Dr 0

0 0

)
and Dr = diag(d1, . . . , dr)

with r = rank(A) and nonzero elements d1, d2, . . . , dr ∈ R that satisfy divisibility relation d1
∣∣ d2 ∣∣ · · · ∣∣ dr. We

call D ∈ Mm,n(R) the Smith Normal Form (SNF) of A ∈Mm,n(R).

We do warn readers that, in most references, the matrix U ∈ GL(m,R) in the Smith Normal Decomposition

(U,D, V ) of A ∈ Mm,n(R) is defined such that UAV = D, as opposed to our definition where U corresponds

to the factorization U−1AV = D. We have decided to change the definition for U ∈ GL(m,R) so that the

factorization U−1AV = D is more compatible with our application, i.e. we should interpret U−1AV = D as

corresponding to some R-module homomorphism equipped with change of bases on the domain and codomain,

as we will see later in this section in Proposition 4.1.11.

Next, we state the result for the existence and uniqueness of Smith Normal Decompositions. The main idea

here involves creating an R-module homomorphism from the given matrix and using Proposition 4.1.7. Note

that definitions for elementary matrices over R, including elementary dilations, are given in Definition A2.5.

Theorem 4.1.9. Let A ∈Mm,n(R) be a matrix over a PID R. Then, a Smith Normal Decomposition (U,D, V )

of A exists and the Smith Normal Form D of A is unique up to elementary dilations over R, i.e. the diagonal

elements of D are unique up to multiplication by units in R.

Proof. We refer to the proof in [AW92, Theorem 5.3.1] and provide an outline below.

Let S = (σ1, . . . , σn) denote the standard ordered basis on Rn and let A = (α1, . . . , αm) be

that on Rm. Define the R-module homomorphism φ : Rn → Rm such that [φ]A,S = A, i.e. A is the

matrix of φ relative to A and S. By Proposition 4.1.7, there exists a basis T = (τ1, . . . , τn) of N , a

basis B = (β1, . . . , βm) of M , and nonzero elements d1, . . . , dr ∈ R with r = rank(A) ≤ n such that

[φ]B,T =

(
Dr 0

0 0

)
∈Mm,n(R) with Dr = diag(d1, . . . , dr)

Let [idM ]B,A ∈ GL(m,R) be the matrix of the identity map idM :M →M relative to A and B. Note
that [idM ]B,A is invertible with inverse [idM ]A,B. Similarly, let [idN ]T ,S ∈ GL(n,R) be the matrix of

the identity map idN : N → N relative to T and S. Then, we can relate [φ]A,S and [φ]B,T by the

following matrix equation:

[idM ]B,A [φ]A,S [idN ]S,T = [φ]B,T
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Let U ∈ GL(m,R), D ∈ Mm,n(R), and V ∈ GL(n,R) be given by

U = [idM ]A,B D = [φ]B,T V = [idN ]S,T

Observe that the divisibility relation on the entries d1, . . . , dr is satisfied by Proposition 4.1.7. We

can confirm that the matrix factorization is correct by the following calculation:

U−1AV =
(
[idM ]A,B

)−1(
[φ]A,S

)(
[idN ]S,T

)
= [idM ]B,A [φ]A,S [idN ]S,T = [φ]B,T = D

Since the elements d1, . . . , dr satisfy the divisibility relation d1
∣∣ . . . ∣∣ dr and U−1AV = D, (U,D, V )

is an SND of A.

Note that the uniqueness of the Smith Normal Form D of A (up to multiplication by elementary

dilations over R) is implied by the uniqueness of the invariant factors up to multiplication by units,

as stated in the Invariant Factor Theorem for Submodules (Theorem 4.1.3). ■

Below, we provide an example of two SNDs of a matrix over Z. Note that for both SNDs, the Smith

Normal Forms on both SNDs only differ by an elementary dilation, e.g. multiplication by (−1) since (−1) is a
unit in Z, but the matrices U and V on an SND (U,D, V ) are not generally unique.

Example 4.1.10. Let A ∈ M4,3(Z) be given as follows:

A =


1 2 3
4 5 6
7 8 9
1 2 4


By Mathematica (a software system), A admits the following Smith Normal Decomposition (U1, D1, V1) where

(U1)
−1AV1 = D1 and the matrices U1 ∈ GL(4,Z), D1 =M4,3(Z), V1 = GL(3,Z) are given by

U1 =


1 3 0 0
4 3 1 0
7 3 2 1
1 4 0 0

 D1 =


1 0 0
0 1 0
0 0 3
0 0 0

 V1 =

1 −2 2
0 1 −1
0 1 0


We can confirm this by doing the following calculation:

(U1)
−1AV1 =


4 0 0 −3
−1 0 0 1
−13 1 0 9
1 −2 1 0



1 2 3
4 5 6
7 8 9
1 2 4


1 −2 2
0 1 −1
0 1 0

 = · · · =


1 0 0
0 1 0
0 0 3
0 0 0

 = D1

Another Smith Normal Decomposition of A is (U2, D2, V2) with U2 ∈ GL(4,Z),D2 =M4,3(Z), and V2 ∈ GL(3,Z)
given as follows:

U2 =


6 4 −1 0
15 13 −3 0
24 22 −5 1
7 4 −1 0

 D2 =


1 0 0
0 1 0
0 0 −3
0 0 0

 V2 =

1 2 1
1 1 1
1 0 0


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As with (U1, D1, V1), we can confirm that (U2, D2, V2) is a valid factorization by doing the following calculation:

(U2)
−1A(V2) =


−1 0 0 1
−6 1 0 3
−31 4 0 18
1 −2 1 0



1 2 3
4 5 6
7 8 9
1 2 4


1 2 1
1 1 1
1 0 0

 = · · · =


1 0 0
0 1 0
0 0 −3
0 0 0

 = D2

Observe that the diagonal elements D2(1, 1) = 1, D2(2, 2) = 1, D2(3, 3) = −3 of D2 obey the divisibility rule

where d1 divides d2 and d2 divides d3. Also, the first two diagonal elements of D1 and D2 match and for the

3rd diagonal element, we have D2(3, 3) = −3 = (−1)D1(3, 3) = (−1)(3).

As implied in the proof of Theorem 4.1.9, given a homomorphism φ : N → M , the nonzero diagonal ele-

ments d1, . . . , dr of the Smith Normal Form D of the matrix [φ]A,S are exactly the nonzero elements guaranteed

by the Invariant Factor Theorem on Submodules (Theorem 4.1.3). We believe this is partly why the nonzero

diagonal elements of the Smith Normal Form of a matrix are sometimes called the invariant factors of the matrix

[φ]A,S . To avoid confusion between the invariant factors of modules (which cannot be invertible elements) and

that of matrices (which can be invertible elements), we will only use invariant factors in the context of modules,

i.e. the nonzero elements of the SNF of matrices are not called invariant factors in this paper.

This means that the problem of finding invariant factor decompositions can now be expressed as a matrix

factorization problem, i.e. that of finding an SND. Below, we describe how we should interpret an SND of [φ]A,S ,

as denoted above, in order to apply Proposition 4.1.5 to calculate invariant factor decompositions.

Proposition 4.1.11. Let φ : N → M be a module homomorphism between free R-modules N and M with

ordered bases S = (σ1, . . . , σn) and A = (α1, . . . , αm) respectively. Let (U,D, V ) be an SND of [φ]A,S ∈ Mm,n(R)

and let di ∈ R be given by di = D(i, i) ̸= 0 for i ∈ {1, . . . , r} with r = rank([φ]A,S).

Then, V ∈ GL(n,R) determines a basis T = (τ1, . . . , τn) of N given by [τi]S = coli(V ) for i ∈ {1, . . . , n}.
Similarly, U ∈ GL(m,R) determines a basis B = (β1, . . . , βm) of M given by [βj ]A = coli(U) for j ∈ {1, . . . ,m}.
Furthermore, the divisibility relation d1

∣∣ d2 ∣∣ · · · ∣∣ dr is satisfied and D = [φ]B,T , i.e.

φ(τi) =

{
diβi if i ∈ {1, . . . , r}
0 if i ∈ {r + 1, . . . , n}

Note that {φ(τ1), . . . , φ(τr)} = {d1β1, . . . , drβr} forms a basis of im(φ) ⊆ M and {τr+1, . . . , τn} determines a

basis for ker(φ) ⊆ N .

Proof. Let e
[n]
i ∈ Mn,1(R) denote the ith standard basis (column) vector of Rn and let e

[m]
j ∈ Mm,1(R) be

the jth standard basis (column) vector of Rm.

Since V ∈ GL(n,R) and U ∈ GL(m,R) are invertible matrices, they can be used as change of

basis matrices. Define a basis T = (τ1, . . . , τn) of N by V = [idN ]S,T . Note that [idN ]T,S = V −1.

Similarly, define a basis B = (β1, . . . , βm) of M by [idM ]A,B = U . Note that [idM ]B,A = U−1. Then,

the coordinate vectors of each τi and βj relative to S and T respectively are given below:

[τi]S = [idN ]S,T [τi]T = V e
[n]
i = coli(V ) ∈ Mn,1(R) for i ∈ {1, . . . , n}

[βj ]A = [idM ]A,B [βj ]B =
(
[idM ]B,A

)−1
e
[m]
j = Ue

[m]
j = colj(U) ∈ Mm,1(R) for j ∈ {1, . . . ,m}

Since (U,D, V ) is an SND of [φ]A,S , U
−1[φ]A,SV = D. Then, [φ]B,T = D by the following calculation:

D = U−1[φ]A,SV =
(
[idM ]A,B

)−1(
[φ]A,S

)(
[idN ]S,T

)
= [idM ]B,A[φ]A,S [idN ]S,T = [φ]B,T
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Then, for each i ∈ {1, . . . , n}, the coordinate vector of φ(τi) relative to B is as follows:

[φ(τi)]B = [φ]B,T [τi]T = De
[n]
i = coli(D) =

{
die

[m]
i if i ∈ {1, . . . , r}

0 if i ∈ {r + 1, . . . , n}

Therefore, φ(τi) = diβi if {1, . . . , r} and φ(τi) = 0 otherwise. Observe that {φ(τ1), . . . , φ(τr)} =

{d1β1, . . . , drβr} is a basis of im(φ) and {τr+1, . . . , τn} is a basis for ker(φ). The divisibility relation

d1
∣∣ d2 ∣∣ · · · ∣∣ dr is satisfied by definition of SND. ■

Since an SND (U,D, V ) of the matrix [φ]A,S of a homomorphism φ : N → M , as denoted above, gives

us the results of the Invariant Factor Theorem for Submodules (Theorem 4.1.3), i.e. we can identify the basis

B = (β1, . . . , βm) of M and the basis {d1β1, . . . , drβr} of im(φ), we can use Proposition 4.1.5 to calculate

invariant factor decompositions.

Observe that given a finite presentation φ : FS → FG, π : FG → M of an R-module M , the basis

B = (β1, . . . , βm) and the nonzero elements d1, . . . , dr ∈ R given by the above proposition (Proposition 4.1.11)

are exactly the information required in the hypothesis of Proposition 4.1.5. In particular, if given ordered bases

S = (σ1, . . . , σn) of FS and A = (α1, . . . , αm), an SND (U,D, V ) of [φ]A,S determines the basis B = (β1, . . . , βm)

by [βj ]A = colj(U) and the nonzero elements dj = D(j, j) and yields the following isomorphism by application

of Proposition 4.1.5:

M ∼=
FG

im(FS)
∼=
R⟨α1, . . . , αm⟩

im(FS)

∼=
R⟨β1, . . . , βm⟩

R⟨d1β1, . . . , drβr⟩
by Proposition 4.1.11

∼=
(

R⟨β1⟩
R⟨d1β1⟩

)
⊕ · · · ⊕

(
R⟨βr⟩
R⟨d1βr⟩

)
⊕R⟨βr+1⟩ ⊕ · · · ⊕R⟨βm⟩ by Proposition 4.1.5

∼=
R

(d1)
⊕ · · · ⊕ R

(dk)
⊕R⊕ · · · ⊕R by Lemma 4.1.6

where k ∈ {1, . . . , r} is chosen such that dk+1, . . . , dr are all the invertible elements of the set {d1, . . . , dr}. We

provide an example of this calculation below, using a homomorphism between Z-modules.

Example 4.1.12. Let N = Z⟨a, b, c, d⟩ and M = ⟨x, y, z⟩. Define the module homomorphism φ : N →M by

a 7→ x− y, b 7→ y + z, c 7→ 2x, d 7→ z.

Then, the matrix of φ relative to the bases A = (a, b, c, d) of N and X = (x, y, z) of M is as follows:

[φ]X,A =

a b c d( )
x 1 0 2 0
y −1 1 0 0
z 0 1 0 1

Using Mathematica, the triple (U,D, V ) of matrices below corresponds to an SND of [φ]X,A:

U =

 1 0 1
−1 1 0
0 1 0

 D =

1 0 0 0
0 1 0 0
0 0 1 0

 V =


1 0 −1 −2
0 1 −1 −2
0 0 1 1
0 0 1 2


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The validity of this factorization can be confirmed by performing the following calculation:

U−1[φ]X,AV =

0 −1 1
0 0 1
1 1 −1

 1 0 2 0
−1 1 0 0
0 1 0 1



1 0 −1 −2
0 1 −1 −2
0 0 1 1
0 0 1 2

 = · · · =

1 0 0 0
0 1 0 0
0 0 1 0

 = D

From V ∈ GL(4,Z), we determine the basis A = (α1, α2, α3, α4) of N by [αi]A = coli(V ) as follows:

[α1]A = col1(V )

α1 = a

[α2]A = col2(V )

α2 = b

[α3]A = col3(V )

α3 = −a− b+ c+ d

[α4]A = col4(V )

α4 = −2a− 2b+ c+ 2d

From U ∈ GL(3,Z), we get the basis Y = (γ1, γ2, γ3) of M by [γi] = coli(U) as follows:

[γ1]X = col1(U)

γ1 = x− y
[γ2]X = col2(U)

γ2 = y + z

[γ3]X = col3(U)

γ3 = x

We can confirm that D = [φ]Y,A by the following calculations:

φ(α1) = φ(a) = x− y = γ1

φ(α2) = φ(b) = y + z = γ2

φ(α3) = φ(−a− b+ c+ d) = −(x− y)− (y + z) + 2x+ z = x = γ3

φ(α4) = φ(−2a− 2b+ c+ 2d) = −2(x− y)− 2(y + z) + 2x+ 2(z) = 0

Then, we can express the kernel and image of φ as follows:

ker(φ) = Z⟨α4⟩ = Z⟨−2a− 2b+ c+ 2d⟩ with rank(kerφ) = 1

im(φ) = Z⟨D(1, 1)γ1, D(2, 2)γ2, D(3, 3)γ3⟩ = Z⟨x− y, y + z, x⟩ with rank(imφ) = 3

While we have established that Smith Normal Decompositions always exist for arbitrary PIDs, we have not

yet discussed an algorithm for their calculation. However, if we restrict the PID R to be a Euclidean domain,

we can use the following result.

Proposition 4.1.13. Any invertible matrix over a Euclidean domain R can be expressed as a finite product

of elementary matrices. That is, GL(n,R) is generated by the elementary matrices over R of degree n.

Remarks. (1) For a proof, see [AW92, Theorem 5.2.10]. Note that definitions for elementary matrices (i.e.

elementary dilations, elementary permutations, and elementary transvections) on arbitrary Eu-

clidean domains are given in Definition A2.5.

(2) The paper Products of Elementary Matrices and Non-Euclidean Principal Ideal Domains [CZZ18]

conjectures that this is not generally true if the ring R is a PID but not a Euclidean domain.

Since elementary matrices correspond to row and column operations (as discussed in Proposition A2.7

for row operations and in Proposition A2.8 for column operations), it is possible to calculate SNDs by doing

matrix reduction assuming the matrices are over Euclidean domains. We will not present a general algorithm

for calculating SNDs of matrices over Euclidean domains in this paper and we refer to [AW92, Remark 5.3.4]

for those interested. Below, we provide an example of this reduction process in a matrix over Z.
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Example 4.1.14. Let A ∈ M3,4(Z) be the (3× 4)-matrix given by

A =

1 2 0 1

0 3 0 3

0 0 1 1


We can calculate an SND of A by the following row and column reduction operation, represented by the sequence

(An) of matrices. Let A0 = A. The elements of An highlighted in red are elements that are to be eliminated

using an elementary transvection, in blue is the pivot used for said transvection, and in orange the pivot

multiplier.

A1 := A0E
[4]
add(1, 2 ;−2) =

 1 2 0 1
0 3 0 3
0 0 1 1



1 −2 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 =

1 0 0 1
0 3 0 3
0 0 1 1



A2 := A1E
[4]
add(1, 4 ;−1) =

 1 0 0 1
0 3 0 3
0 0 1 1



1 0 0 −1
0 1 0 0
0 0 1 0
0 0 0 1

 =

1 0 0 0
0 3 0 3
0 0 1 1



A3 := A2E
[4]
add(2, 4 ;−1) =

1 0 0 0

0 3 0 3
0 0 1 1



1 0 0 0

0 1 0 −1
0 0 1 0
0 0 0 1

 =

1 0 0 0
0 3 0 0
0 0 1 1



A4 := A3E
[4]
add(3, 4 ;−1) =

1 0 0 0
0 3 0 0

0 0 1 1



1 0 0 0
0 1 0 0

0 0 1 −1
0 0 0 1

 =

1 0 0 0
0 3 0 0
0 0 1 0


The matrix A4 is almost is Smith Normal Form. We need to apply row and column permutations. Highlighted

in green are the elements that are switched in each An.

A5 := E
[3]
swap(2, 3)A4 =

1 0 0
0 0 1
0 1 0

1 0 0 0

0 3 0 0

0 0 1 0

 =

1 0 0 0
0 0 1 0
0 3 0 0



A6 := A5E
[4]
swap(2, 3) =

1 0 0 0

0 0 3 0

0 1 0 0



1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 =

1 0 0 0
0 1 0 0
0 0 3 0

 =: D

The matrices U ∈ GL(3,Z) and V ∈ GL(4,Z) are given by:

V := E
[4]
add(1, 2 ;−2)E

[4]
add(1, 4 ;−1)E

[4]
add(2, 4 ;−1)E

[4]
add(2, 4 ;−1)E

[4]
swap(2, 3) =


1 0 −2 1
0 0 1 −1
0 1 0 −1
0 0 0 1


U :=

(
E
[3]
swap(2, 3)

)−1

=

1 0 0
0 0 1
0 1 0


Observe that U and V are invertible since they are both a finite product of elementary matrices, which are also

invertible. Therefore, the triple (U,D, V ) represent an SND of A.
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The method described in [AW92, Remark 5.3.4] mostly involves the elimination of specific entries in a

matrix, like in the case of matrices over R. However, since nonzero elements of an arbitrary Euclidean domain

are not generally invertible, the entries used to eliminate other entries along the same row or column (usually

called a pivot) have to be chosen with care, i.e. we cannot use any nonzero element as in the case of matrices

over R. The main difference lies in the family of elementary dilations over R which, as described in Definition

A2.5, are defined on the group of units R× of R. In the case of R = R, any nonzero element of R can be used

to construct an elementary dilation. So, any nonzero element a ∈ R of a matrix over R can be used to eliminate

any entry in the same row or column since a can be reduced by 1 using an elementary dilation by a−1 = 1
a . In

contrast, the only units of Z are {−1, 1} and an element such as 2 ∈ Z cannot be reduced to 1.

Consequently, there is no direct analog of row or column echelon form for matrices over Z and over F[x]. In
particular, even if a matrix over Z or F[x] may appear to be in row or column echelon form (as we conventionally

define those), the pivots of that matrix generally do not correspond to the diagonal elements of its Smith Normal

Form. Note that this applies more generally for Euclidean domains that are not fields. We provide an example

of this problem below.

Example 4.1.15. Let A ∈M3,4(Z) be the matrix given by

A =

 2 0 3 0

0 7 2 0

0 0 0 3


Note that the matrix A is in row echelon form with pivots 2, 7, 3 (in the row echelon sense) above highlighted

in red . An SND (U,D, V ) of A, calculated by Mathematica, is given below:

U = I3 D =

1 0 0 0

0 1 0 0

0 0 3 0

 V =


−10 −6 0 −21
−2 −1 0 −4
7 4 0 14

0 0 1 0


Observe that the nonzero diagonal elements of D are 1, 1, 3, not 2, 7, 3. Note that this is because we cannot do

dilation operations on A as a matrix over Z like the one below:

A′ = E
[3]
dilate

(
1,

1

2

)
A =

 1
2 0 0

0 1 0

0 0 1


 2 0 3 0

0 7 2 0

0 0 0 3

 =

1 0 2
3 0

0 7 2 0

0 0 0 3


Note that 1

2 is not an element of Z and therefore, E
[3]
dilate

(
1, 12

)
is not an elementary matrix over Z. However, if

we consider A as a matrix over R, we can calculate an SND (UR, DR, VR) of A as follows:

UR = I3 DR =

1 0 0 0

0 1 0 0

0 0 1 0

 VR =


1
2 0 0 − 3

2

0 1
7 0 − 2

7

0 0 0 1

0 0 1
3 0


Observe that VR is not a matrix over Z. As a sidenote, since all nonzero field elements are invertible, any

nonzero diagonal element of the Smith Normal Form of any matrix over a field F can always be made into 1 ∈ F
by multiplication of an appropriate elementary dilation over F
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Section 4.2. Matrix Calculation of Homology of Chain Complexes

Let C∗ = (Cn, ∂n)n∈Z be a chain complex of free modules Cn over a PID R with differentials ∂n : Cn → Cn+1 and

assume that each Cn is of finite rank. By the assumption on rank(Cn), the n
th homology Hn(C∗) of C∗ is finitely

generated and therefore admits an invariant factor decomposition by the Structure Theorem (Theorem 4.1.1).

In this section, we discuss how SNDs of the matrices [∂n+1] and [∂n] of ∂n+1 : Cn+1 → Cn and ∂n : Cn → Cn−1

respectively (relative to some chosen ordered bases) can be used to calculate these decompositions for Hn(C∗).

The method we discussed for calculating invariant factor decompositions in Section 4.1 starts with a finite

presentation for the R-module in question. The following proposition identifies a finite presentation for Hn(C∗)

that arises naturally from the definition Hn(C∗) := ker(∂n)/ im(∂n+1).

Proposition 4.2.1. Let C∗ = (Cn, ∂n)n∈Z be a chain complex of free modules Cn over a PID R and differentials

∂n : Cn → Cn−1. Then, the n
th homology group Hn(C∗) of C∗ admits the following presentation

Cn+1

∂n+1−−−−→ ker(∂n)
π
−−→ Hn(C∗) −−→ 0

with π being the canonical projection onto Hn(C∗).

Proof. Note that since C∗ is a chain complex, i.e. im(∂n+1) ⊆ ker(∂n), the restriction of the codomain of

∂n+1 : Cn+1 → Cn onto ker(∂n) is well-defined. Since ker(∂n) is a submodule of a free module

Cn over a PID R, ker(∂n) is a free R-module for all n ∈ Z [DF03, Theorem 12.1]. By definition

of homology of chain complexes, Hn(C∗) = ker(∂n) / im(∂n+1). Then, im(∂n+1) = ker(π), and

im(π) = ker(Hn(C∗) → 0) = Hn(C∗). Therefore, Equation (1) is an exact sequence of free R-

modules and is a presentation of Hn(C∗). ■

We want to emphasize that, in the proposition above, the codomain of the (n + 1)th differential ∂n+1 is

restricted to ker(∂n). For clarity, we write ∂ ker
n+1 : Cn+1 → ker(∂n) to refer to ∂n+1 : Cn+1 → Cn with this

codomain restriction. Since it is rarely the case that ker(∂n) = Cn, the matrices [∂ ker
n+1] (i.e. with the codomain

restriction) and [∂n+1] (i.e. without the codomain restriction) are generally not the same. For example, since

rank(ker ∂n) ≤ rank(Cn), the number of rows of [∂ ker
n+1] is less than or equal to that of [∂n]. It may also be the

case that the basis of ker(∂n) used for [∂ ker
n+1] is not a subset of the basis of Cn used for [∂n+1].

This means that the results of Section 4.1 only immediately apply to the matrix [∂ ker
n+1]. More specifically,

if we were to use an SND of [∂n+1], then said calculation would correspond to the following sequence:

Cn+1

∂n+1−−−−→ Cn
π
−−→ Hn(C∗) −−→ 0

Note that this sequence is generally not exact and, therefore, is not a presentation of Hn(C∗). Consequently, in

order for Hn(C∗) to be computable from [∂n+1], we need to determine how SNDs of [∂n+1] correspond to those

of [∂ ker
n+1].

Before we discuss this further, we provide an example calculation of the 0th homology group H0(K) =

H0(K;Z) of a simplicial complex K below. Note that, by definition, the 0th boundary map ∂0 : C0(K) → 0

has trivial codomain. Therefore, ker(∂0) = C0(K) = C0(K;Z) and the method of calculation by Section 4.1 is

directly applicable to the matrix [∂1]. Note that an orientation on K induces a standard ordered basis on the

chain groups of K.

Example 4.2.2. Define the simplicial complex K as illustrated below and equip K with the orientation given

by Vert(K) = (a1, a2, a3, a4, a5, a6).
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The following sequence is a finite presentation for the 0th homology group H0(K) = H0(K;Z) of K with

coefficients in Z:

C1

∂1−−−−−→

ker(∂0)

=

C0

π
−−−−−→ H0(K) −−−−→ 0

Therefore, we can calculate H0(K) using an SND (U1, D1, V1) of the matrix [∂1] of ∂1 : C1(K)→ C0(K) relative

to some ordered bases. The orientation on K by Vert(K) = (a1, a2, a3, a4, a5, a6) determines the following

ordered bases of C0(K) and C1(K):

0-simplices: (a1, a2, a3, a4, a5, a6) and 1-simplices: (a1a2, a3a4, a4a5, a4a6, a5a6)

Then, the matrix [∂1] ∈M6,5(Z) relative to the standard ordered bases can be calculated as follows:

[∂1] =

a1a2 a3a4 a4a5 a4a6 a5a6
a1 −1 0 0 0 0
a2 1 0 0 0 0
a3 0 −1 0 0 0
a4 0 1 −1 −1 0
a5 0 0 1 0 −1
a6 0 0 0 1 1




Given below is an SND (U1, D1, V1) of [∂1] calculated using Mathematica. Since C0 = ker(∂0), all six columns

of U1 correspond to a basis of ker(∂0). Highlighted in green are the columns of U1 ∈ GL(6,Z) corresponding
to torsion summands of H0(K) and their corresponding diagonal elements in D1 and in blue are the columns

of U1 corresponding to free summands of H0(K).

U1 =

a1 −1 0 0 0 0 0
a2 1 0 0 0 1 0
a3 0 −1 0 0 0 0
a4 0 1 −1 −1 0 0
a5 0 0 1 0 0 0
a6 0 0 0 1 0 1



 D1 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

 V1 =

a1a2 1 0 0 0 0
a3a4 0 1 0 0 0
a4a5 0 0 1 0 1
a4a6 0 0 0 1 −1
a5a6 0 0 0 0 1




Then, by Proposition 4.1.5, we can calculate H0(K) as follows:

H0(K) =
C0(K)

im(∂1)
∼=

Z
〈
a2 − a1 , a4 − a5 , a5 − a4 , a6 − a4 , a2 , a6

〉
Z
〈
(1)(a2 − a1) , (1)(a4 − a3) , (1)(a5 − a4) , (1)(a6 − a4)

〉
=

Z⟨a2 − a1⟩
Z⟨a2 − a1⟩

⊕
Z⟨a4 − a3⟩
Z⟨a4 − a3⟩

⊕
Z⟨a5 − a4⟩
Z⟨a5 − a4⟩

⊕
Z⟨a6 − a4⟩
Z⟨a6 − a4⟩

⊕ Z⟨a2⟩ ⊕ Z⟨a6⟩

= Z⟨a2⟩ ⊕ Z⟨a6⟩ ∼= Z2

Observe that this result matches with the expected interpretation of the 0th homology group of K, wherein K

has two path components represented by the homology classes [a2] and [a6] as illustrated below:
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We now considerHn(C∗) and the matrix [∂ ker
n+1] corresponding to the presentation ofHn(C∗) by Proposition

4.2.1, i.e. ∂ ker
n+1 refers to ∂n+1 with codomain restricted to ker(∂n). Following the calculation presented in Section

4.1, an SND (U ker
n+1, D

ker
n+1, V

ker
n+1) of [∂

ker
n+1] determines a basis B = (β1, . . . , βr+f ) of ker(∂n) with rank(ker ∂n) =

r + f by [βj ] = colj(U
ker
n+1) and nonzero elements d1, . . . , dr ∈ R by dj = D ker

n+1(j, j) such that {d1β1, . . . , drβr}
is a basis for im(∂n+1).

Observe that we can express the partition of the basis B into (β1, . . . , βr) and (βr+1, . . . , βm) as a decom-

position ker(∂n) = Ktor
n ⊕Kfree

n of ker(∂n) where K
tor
n and Kfree

n are free R-submodules given by:

Ktor
n := R⟨β1, . . . , βr⟩ and Kfree

n := R⟨βr+1, . . . , βm⟩

As the notation suggests, the submodule Ktor
n accounts for all elements in ker(∂n) that map to torsion elements

or trivial in Hn(C∗) and the submodule Kfree
n accounts for the elements of ker(∂n) that remain free in Hn(C∗).

We illustrate this below with the torsion component of Hn(C∗) highlighted in green and free component of

Hn(C∗) in blue .

Hn(C∗) ∼=
ker(∂n)

im(∂n+1)
∼=
Ktor
n ⊕Kfree

n

im(∂n+1)
∼=

Ktor
n

im(∂n+1)
⊕ Kfree

n

∼=
R⟨β1⟩
R⟨d1β1⟩

⊕ · · · ⊕
R⟨βr⟩
R⟨drβr⟩

⊕ R⟨βr+1⟩ ⊕ · · · ⊕ R⟨βm⟩

In order for Hn(C∗) to be computable from [∂n+1], we need to show that a basis B = (β1, . . . , βm) of ker(∂n)

and elements d1, . . . , dr ∈ R as described above can be calculated from some SND (Un+1, Dn+1, Vn+1) of [∂n+1]

with Un+1 inducing a basis on Cn, not on ker(∂n). The existence of such an SND of [∂n+1] is given by the

following result, taken from [Mun93, Theorem 11.4].

Theorem 4.2.3. Let C∗ = (Cn, ∂n) be a chain complex of free modules Cn over a PID R with differentials

∂n : Cn → Cn−1 and assume each Cn is of finite rank. For each n ∈ N0, Cn decomposes into the following direct

sum of free R-modules:

Cn = Ktor
n ⊕Kfree

n ⊕ Cn
ker(∂n)

i

where ker(∂n) = Kfree
n ⊕ Ktor

n , im(∂n+1) ⊆ Ktor
n , and Ktor

n / im(∂n+1) is the torsion component of Hn(C∗).

Furthermore, there exists an SND (Un+1, Dn+1, Vn+1) of [∂n+1] such that the basis B = (β1, . . . , βq) of Cn by

[βj ] = colj(Un+1) partitions into three sets of bases as follows:

Ktor
n = R⟨β1, . . . , βr ⟩ , Kfree

n = R⟨βr+1, . . . , βr+f ⟩ and
Cn

ker(∂n)
= R⟨βr+f+1, . . . , βq ⟩

Note that im(∂n+1) = R⟨ d1β1, . . . , drβr ⟩ with d1, . . . , dr ∈ R corresponding to the nonzero entries of Dn.

Remark. For a proof, see [Mun93, Theorem 11.4] where they write Wn, Vn, and Un to refer to Ktor
n , Kfree

n ,

and Cn / ker(∂n) respectively. Note that since Ktor
n / im(∂n+1) has to be the torsion component of
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Hn(C∗), we have the following by definition of torsion component:

Hn(C∗) =
ker(∂n)

im(∂n+1)
∼= Kfree

n ⊕ Ktor
n

im(∂n+1)
.

with Kfree
n = R⟨βr+1, . . . , βr+f ⟩ ∼= Rf consists of the torsion-free elements of Hn(C∗).

The existence of this decomposition of Cn into direct summands guarantees that the information we

get about im(∂n+1) from an SND of [∂n+1] is compatible to that about ker(∂n) from an SND of [∂n]. Let

rank(Cn) = q and let the ranks of the direct summands of Cn by Theorem 4.2.3 be given as follows:

rank(Ktor
n ) = r ; rank(Kfree

n ) = f ; rank
(
Cn
/
ker(∂n)

)
= q

Let (Wn+1, Dn+1, Vn+1) be an arbitrary SND of [∂n+1]. The first r columns of the matrixWn+1Dn+1 determines

a basis (d1α1, . . . , drαr) of im(∂n+1) (or equivalently, the first r columns of Wn+1 and the first r rows of Dn+1).

Let A = (α1, . . . , αm) be the basis of Cn given by [αj ] = colj(Wn+1). Part of Theorem 4.2.3 tells us that the

basis A of Cn partitions into two sets: the subset (α1, . . . , αr) is a basis of the direct summand Ktor
n of Cn

and the other subset (αr+1, . . . , αm) form a basis of the direct sum Kfree
n ⊕ (Cn /ker ∂n) , as illustrated below:

...
...

...
...

[α1] · · · [αr] [αr+1] · · · [αm]
...

...
...

...




Wn+1 ∈ GL(m,R)︷ ︸︸ ︷

︸ ︷︷ ︸
Ktor
n

︸ ︷︷ ︸
Kfree
n ⊕ (Cn /ker ∂n)

−1

[∂n+1]Vn+1 =

d1
. . .

dr
0 · · · 0
...

. . .
...

0 · · · 0





Dn+1 ∈ Mq,(−)(R)︷ ︸︸ ︷

Note that, in general, the basis (αr+1, . . . , αm) of Kfree
n ⊕ (Cn /ker(∂n)) generally does not partition into bases

for each summand.

In contrast, let (Un, Dn, Vn) be an arbitrary SND of [∂n]. The matrix Vn ∈ GL(m,R) determines a basis

K = (κ1, . . . , κm) of Cn by [κi] = coli(Vn) such that (κ1, . . . , κq) is a basis of Cn /ker ∂n and (κq+1, . . . , κm) is

a basis of ker(∂n) = Ktor
n ⊕Kfree

n , as illustrated below.

(Un)[∂n]

...
...

...
...

[κ1] · · · [κq] [κq+1] · · · [κm]
...

...
...

...




Vn ∈ GL(m,R)︷ ︸︸ ︷

︸ ︷︷ ︸
Cn /ker(∂n)

︸ ︷︷ ︸
ker(∂n) = Ktor

n ⊕Kfree
n

=

(∗)1
. . .

(∗)q
0 · · · 0
...

. . .
...

0 · · · 0





Dn ∈ M(−),q(R)︷ ︸︸ ︷

The problem here is that the basis (κq+1, . . . , κm) generally does not partition into a basis of Ktor
n and a basis

of Kfree
n .
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What Theorem 4.2.3 guarantees is the existence of an SND (Un+1, Dn+1, Vn+1) of [∂n+1] wherein a basis of

Kfree
n can be identified, possibly in comparison with another SND of [∂n]. Then, rows of the SNF Dn+1 of [∂n+1]

corresponding to basis elements of Cn / ker ∂n can be removed to get the SNF D ker
n+1 of [∂ ker

n+1], the matrix of

∂n+1 with the codomain restriction into ker(∂n). We provide an example of such an SND below, in a calculation

of the 1st homology group of a simplicial complex.

Example 4.2.4. Let K be the simplicial complex illustrated below with orientation Vert(K) = (a1, a2, a3, a4).

The 1st homology group H1(K) = H1(K;Z) of K can be calculated from a Smith Normal Decomposition of

[∂2] with ∂2 : C2(K)→ C1(K). The orientation on K induces a standard ordered bases on the chain groups of

K. We identify these bases for C0(K), C1(K), and C2(K) below.

four 0-simplices : (a1, a2, a3, a4)

six 1-simplices : (a1a2, a1a3, a1a4, a2a3, a2a4a3a4)

two 2-simplices : (a1a3a4, a2a3a4)

The matrices [∂1] and [∂2] of the boundary maps ∂1 : C1(K) → C0(K) and ∂2 : C2(K) → C1(K) respectively

relative to these bases are given below.

[∂1] =

a1a2 a1a3 a1a4 a2a3 a2a4 a3a4
a1 −1 −1 −1 0 0 0

a2 1 0 0 −1 −1 0

a3 0 1 0 1 0 −1
a4 0 0 1 0 1 1


 and [∂2] =

a1a3a4 a2a3a4
a1a2 0 0

a1a3 1 0

a1a4 −1 0

a2a3 0 1

a2a4 0 −1
a3a4 1 1




Given below is an SND (U2, D2, V2) of [∂2], with the columns of U2 corresponding to Ktor

1 (following the

notation in Theorem 4.2.3) highlighted in green .

U2 =

a1a2 0 0 1 0 1 0

a1a3 1 0 0 0 0 0

a1a4 −1 0 −1 1 0 0

a2a3 0 1 0 0 0 0

a2a4 0 −1 1 0 0 0

a3a4 1 1 0 0 0 1




D2 =

1 0

0 1

0 0

0 0

0 0

0 0




V2 = I2

Columns 3 to 6 of U2 determine a basis of Kfree
1 ⊕ (C1 /ker ∂1). We can confirm that the basis B = (β1, . . . , β6)

of C1 by [βi] = coli(U2) partitions into bases for Ktor
1 , Kfree

1 , and C1 / ker ∂1 as given in Theorem 4.2.3 by

considering the SND (U1, D1, V1) of [∂1] given as follows:
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U1 =

a1 −1 −1 0 0

a2 0 1 0 0

a3 0 1 −1 0

a4 1 1 1 1


 D1 =

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0


 V1 =

a1a2 0 1 0 0 0 1

a1a3 0 0 0 1 0 0

a1a4 1 0 0 −1 0 −1
a2a3 0 0 0 0 1 0

a2a4 0 0 0 0 −1 1

a3a4 0 0 1 1 1 0




︸ ︷︷ ︸
C1 /ker ∂1

Ktor
1︷ ︸︸ ︷

︸︷︷︸
Kfree

1

Observe that the matrix U2 is the matrix V1 up to column permutation. The basis B = (β1, . . . , β6) of C1 given

by [βi] = coli(U2) is described below, grouped relative to the decomposition of C1.

σ1 = a1a3 − a1a4 + a3a4 with d1 = D2(1, 1) = 1

σ2 = a2a3 − a2a4 + a3a4 with d2 = D2(2, 2) = 1

σ3 = a1a2 − a1a4 + a2a4

σ4 = a1a4
σ5 = a1a2
σ6 = a3a4

Ktor
1 :

Kfree
1 :

C1

/
ker ∂1 :

We can calculate H1(K) by disregarding the rows of D2 corresponding to the basis elements of C1 /ker ∂1, i.e.

by only considering the basis elements of Kfree
1 and Ktor

1 as follows:

H1(K) =
ker ∂1
im ∂2

∼=
Ktor

1

im(∂1)
⊕ Kfree

1
∼=

Z⟨σ1⟩
Z⟨d1σ1⟩

⊕
Z⟨σ2⟩
Z⟨d2σ2⟩

⊕ Z⟨σ3⟩

∼= Z⟨a1a2 − a1a4 + a2a4⟩ ∼= Z

Note that both summands of Ktor
1 map to trivial elements in H1(K) since both σ1, σ2 ∈ im ∂2. The cycle

representative σ3 of the homology class [σ3] ∈ H1(K) of K is illustrated below:

Once the decomposition of Cn into the three direct summands is established, an SND (Un+1, Dn+1, Vn+1)

of [∂n+1] with the required properties can be generated from any SND (Wn+1, Dn+1, Vn+1) of [∂n+1]. The first

r columns of Wn+1, as discussed earlier, determines a basis (α1, . . . , αr) of Ktor
n by [αi] = coli(Wn+1). Since

Kfree
n and Cn /ker(∂n) are direct summands of Cn, there must exist bases (γ1, . . . , γf ) of K

free
n and (ω1, . . . , ωq)

of Cn /ker(∂n) that is a subset of some basis of Cn. Observe that B, as given below, is a basis of Cn.

B :=

{
α1 , . . . , αr︸ ︷︷ ︸
basis of Ktor

n

,

basis of Kfree
n︷ ︸︸ ︷

γ1 , . . . , γf , ω1 , . . . , ωq︸ ︷︷ ︸
basis of Cn

/
ker ∂n

}

A matrix Un+1 ∈ GL(m,R) such that (Un+1, Dn+1, Vn+1) is an SND of [∂n+1] and is as given by Theorem 4.2.3
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can be defined as follows:

Un+1 =

...
...

...
...

...
...

[α1] · · · [αr] [γ1] · · · [γf ] [ω1] · · · [ωq]
...

...
...

...
...

...




︸ ︷︷ ︸
Ktor
n

︸ ︷︷ ︸
Kfree
n

︸ ︷︷ ︸
Cn /ker ∂n

Observe that since im(∂n+1) ⊆ Ktor
n , there should be no non-trivial elements of Cn+1 mapping into Kfree

n and

Cn / ker ∂n. Then, the expression of [∂n+1] relative to the basis B of Cn (with the same initial basis of Cn+1)

should be given exactly by Dn+1. That is, replacing the basis elements αr+1, . . . , αm of Kfree
n ⊕ (Cn / ker ∂n)

with any basis element leaves the matrix Dn+1 undisturbed. We can confirm this by showing that the equation

(Wn+1)
−1[∂n+1]Vn+1 = Dn+1 from the SND (Wn+1, Dn+1, Vn+1) implies that (Un+1)

−1[∂n+1]Vn+1 = Dn+1.

Observe that if cycle representatives for the homology groups are not required, we can calculate the invariant

factor decomposition of homology groups of free chain complexes using any SNDs of [∂n+1] (for the nonzero

invariant factors) and of [∂n] (for rank(∂n)). We state this as a result below.

Corollary 4.2.5. Let C∗ = (Cn, ∂n) be a chain complex of finitely-generated free modules Cn over a PID R

with differentials ∂n : Cn → Cn−1. For each n ∈ N0, the n
th homology group Hn(C∗) can be calculated using

the SNF Dn+1 of [∂n+1] as follows:

Hn(C∗) ∼= Rf ⊕ R

R⟨d1⟩
⊕ · · · ⊕ R

R⟨dr⟩

where {d1, . . . , dr} with r = rank(∂n+1) are exactly the nonzero diagonal elements of Dn+1 and f + r =

rank(ker ∂n). Note that rank(ker ∂n) can be determined from the SNF of [∂n].

Proof. Let (Un+1, Dn+1, Vn+1) be the SND of [∂n+1] as denoted in Theorem 4.2.3, i.e. the basis B =

(β1, . . . , βm) of Cn induced by [βj ] = colj(Un+1) with Un+1 ∈ GL(m,R) partitions into three

bases: (β1, . . . , βr) of Ktor
n , (βr+1, . . . , βr+f ) of Kfree

n , and (βr+f+1, . . . , βm) of Cn / ker ∂n. The

nonzero entries of Dn+1 are given by d1, . . . , dr with r = rank(∂n+1) and dj = Dn+1(j, j). Since

ker(∂n) = Ktor
n ⊕Kfree

n , rank(∂n) = r + f . Then,

Hn(C∗) =
ker ∂n
im ∂n+1

=
Ktor
n

im(∂n+1)
⊕Kfree

n =
R⟨β1, . . . , βr⟩

R⟨d1β1, . . . , drβr⟩
⊕R⟨βr+1, . . . , βr+f ⟩

=
R

R⟨d1⟩
⊕ R

R⟨d1⟩
⊕Rf

Since the SNF Dn+1 of [∂n+1] is unique up to multiplication by elementary dilations over R, any

SND of [∂n+1] will share the same SNF. ■

This result is particularly powerful since the SNDs of [∂n+1] as guaranteed by Theorem 4.2.3 can be

cumbersome to find. In addition, most software packages only provide the SNF of matrices over Z as output,

not the full SND.

We re-calculate H1(K) of Example 4.2.4 again using this corollary below. Note that the SNDs we provide

in the example below are the SNDs returned by the SmithDecomposition[-] method with the matrices [∂1]

and [∂2] as input. That is, the SNDs presented in Example 4.2.4 are specifically calculated to match Theorem

4.2.3.
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Example 4.2.6. Let the simplicial complex K be as given in Example 4.2.4. An SND (U ′
2 , D

′
2, V

′
2 ) of [∂2] is

given below with the columns of U ′
2 corresponding to Ktor

1 highlighted in green and the columns corresponding

to the direct sum Kfree
1 ⊕ (C1 /ker ∂1) are highlighted in purple .

U2 =

a1a2 0 0 0 1 0 0

a1a3 1 0 0 0 0 0

a1a4 −1 0 1 0 0 0

a2a3 0 1 0 0 0 0

a2a4 0 −1 0 0 1 0

a3a4 1 1 0 0 0 1





Ktor
1︷ ︸︸ ︷

︸ ︷︷ ︸
Kfree

1 ⊕ (C1 /ker ∂1)

D′
2 =

1 0

0 1

0 0

0 0

0 0

0 0




V ′
2 = I2

An SND (U ′
1, D

′
1, V

′
1) of [∂1] is also given below, with the columns of V ′

1 corresponding to C1 /ker ∂1 highlighted

in red and the columns corresponding to ker ∂1 in orange .

U ′
1 =

a1 −1 −1 −1 0

a2 1 0 0 0

a3 0 1 0 0

a4 0 0 1 1


 D′

1 =

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0


 V ′

1 =

a1a2 1 0 0 1 1 0

a1a3 0 1 0 −1 0 1

a1a4 0 0 1 0 −1 −1
a2a3 0 0 0 1 0 0

a2a4 0 0 0 0 1 0

a3a4 0 0 0 0 0 1




︸ ︷︷ ︸
C1 /ker ∂1

Ktor
1 ⊕Kfree

1︷ ︸︸ ︷

We can determine the following facts from these two SNDs:

1. From D′
1, rank(ker ∂1) = 6− 3 = 3 and from D′

2, r = rank(∂2) = 2. Therefore, f = 1.

2. Let A = (α1, . . . , α6) be a basis of C1 by [αj ] = colj(U
′
2). We can confirm that the basis (α3, . . . , α6) of

Kfree
1 ⊕ (C1 /ker ∂1) does not partition into bases for each summand since ∂1(αj) ̸= 0 for j ∈ {3, . . . , 6}

but rank(Kfree
1 ) = f = 1.

3. Let K = (κ1, . . . , κ6) be a basis on C1 by [κi] = coli(V
′
1). Since the basis elements κ4, κ5, κ6 do not

appear as basis elements in A, i.e. the columns of V ′
1 are not columns of U ′

2. Note that it is not

immediately clear if one of κ4, κ5, κ6 generates Kfree
1 .

However, if we do not need to calculate cycle representatives, we have enough information to calculate H1(K)

up to isomorphism using Corollary 4.2.5: From D′
2, we have r = 2, d1 = 1, d2 = 1. From D′

1, we have

rank(ker ∂1) = 3 and f = 3− 2 = 1. Then,

H1(K) ∼= Zf ⊕
(

Z
d1Z

)
⊕
(

Z
d2Z

)
= Z3−2 ⊕

(
Z
Z

)
⊕
(
Z
Z

)
= Z .

Observe that this matches with our calculation for H1(K) in Example 4.2.4.
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Section 4.3. The Graded Structure Theorem and SNDs in the Graded Case

In Section 4.1, we discussed a method of calculating the invariant factor decompositions of finitely generated

modules over a PID R, i.e. finitely generated modules in the category ModF[x]. In this section, we extend this

method to the category GrModF[x] of graded F[x]-modules, wherein invariant factor decompositions need to

be given by graded isomorphisms. For reference, we discuss the category GrModF[x] and the notation we use

involving graded F[x]-modules earlier in Section 2.4.

To start, we state Graded Structure Theorem in GrModF[x] for graded F[x]-modules, which is the

theorem corresponding to the Structure Theorem (Theorem 4.1.1) in the ungraded category ModF[x] of F[x]-
modules.

Theorem 4.3.1. The Graded Structure Theorem.

Let M be a finitely generated graded F[x]-module over F[x] for some field F. Then, there exists a finite direct

sum of shifted cyclic graded submodules of F[x] that is graded isomorphic to M as follows:

M
GrMod∼= Σs1

(
F[x]
(xt1)

)
⊕ · · · ⊕Σsr

(
F[x]
(xtr )

)
⊕ Σsr+1F[x]⊕ · · · ⊕ ΣsmF[x]

with indices s1, . . . , sr, . . . , sm ∈ N0 and non-zero, non-unit xt1 , xt2 , . . . , xtr ∈ F[x] such that the divisibility

relation xt1
∣∣xt2 ∣∣ · · · ∣∣xtr is satisfied. Furthermore, the collection

{
(xt1 , s1), . . . , (x

tr , sr), (0, sr+1), . . . , (0, sm)
}

is uniquely determined by M up to graded isomorphism.

Remark. This theorem is stated in [ZC05, Theorem 2.1] without proof. The paper [Loe23] by Clara Löh

provides a detailed proof, with this theorem listed as [Loe23, Theorem 5.1].

Much like the case of the Structure Theorem in ModF[x], we give the decomposition guaranteed by the

Graded Structure Theorem a special name.

Definition 4.3.2. Let M be a finitely generated F[x]-module and let the following direct sum decomposition

of M be as denoted in the Graded Structure Theorem (Theorem 4.3.1):

M
GrMod∼= Σs1

(
F[x]
(xt1)

)
⊕ · · · ⊕Σsr

(
F[x]
(xtr )

)
⊕ Σsr+1F[x]⊕ · · · ⊕ ΣsmF[x]

This decomposition is called the graded invariant factor decomposition of M . The invariant factors

of M are given by xt1 , . . . , xtr ∈ F[x] (which are non-zero and non-unit) and the grading shifts of M by

s1, . . . , sm ∈ N0.

Remark. The term invariant factor for graded F[x]-modules is deliberately chosen since it corresponds to that

of F[x]-modules, i.e. the invariant factors of a graded F[x]-moduleM are exactly the invariant factors

of M viewed as a F[x]-module (disregarding grading). Note that some references, e.g. [Loe23], define

invariant factors to include zero elements. To avoid confusion, we sometimes use the term nonzero

invariant factor for clarity.

In this section, we discuss how this graded invariant factor decomposition can be calculated, under certain

restrictions, using a method similar to that for non-graded decompositions as presented in Section 4.1. Let M

be a finitely generated graded F[x]-module. Since F[x] is a PID, the non-graded Structure Theorem (Theorem
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4.1.1) guarantees the existence of an invariant factor decomposition for M as a F[x]-module as follows:

M ∼=
(
F[x]
(f1)

)
⊕ · · · ⊕

(
F[x]
(fr)

)
⊕ F[x]⊕ · · · ⊕ F[x]

with nonzero invariant factors f1, . . . , fr ∈ F[x]. However, this isomorphism may not correspond to that between

graded F[x]-modules. For example, if fj ∈ F[x] is not a homogeneous element for some j ∈ {1, . . . , r}, then the

ideal (fj) is not a graded ideal of F[x] and the quotient F[x]/(fj) is not necessarily a graded ring. If we assume

that each fj ∈ F[x] is homogeneous of the form fj = xtj and each homogeneous element q ∈M is mapped to a

homogeneous element in one of the summands, then we can shift each summand such that the degree of q ∈M
matches that of its image in the decomposition as follows:

M
GrMod∼= Σdegh(q1)

(
F[x]
(xt1)

)
⊕ · · · ⊕ Σdegh(qr)

(
F[x]
(xtr )

)
⊕ Σdegh(qr+1)F[x]⊕ · · · ⊕ Σdegh(qr+1)F[x] (E1)

where qj ∈ M is chosen such that qj corresponds to the generator 1j of each summand. We claim that,

assuming we start with a presentation that respects the graded structure, then a non-graded invariant factor

decomposition can be transformed (for lack of a better word) to a graded invariant factor decomposition. Below,

we provide a definition for these kinds of presentations.

Definition 4.3.3. A graded presentation of a graded F[x]-module M is a presentation

FS
φ
−−→ FG

π
−−→ M −→ 0

onM such that FS and FG are free graded F[x]-modules and the homomorphisms φ : FS → FG and π : FG →M

are graded homomorphisms.

A graded presentation by φ : FS → FG and π : FG → M of a graded F[x]-module M determines M up

to non-graded isomorphism by M ∼= FG / im(φ), as discussed under Definition 4.1.2. Since im(φ) is a graded

submodule of FG, the quotient FG / im(φ) is a graded F[x]-module that inherits the grading of FG and the

graded presentation also determinesM up to graded isomorphism. As with the non-graded case, the calculation

of graded invariant factor decompositions start with graded presentations. Below, we provide an existence claim

for these graded presentations.

Lemma 4.3.4. There exists a graded presentation for any finitely generated graded F[x]-module.

Proof. Let M be a finitely generated graded F[x]-module. By assumption of M being graded, there must

exist a homogeneous system of generators {a1xs1 , . . . , amxsm} of M with degh(ajx
sj ) = sj ∈ N0 for

all j ∈ {1, . . . ,m}. Note that we write ajx
sj ∈ M such that aj is an element of the F-vector space

Msj with Msjx
sj being the homogeneous component of M of degree sj . We can construct a graded

presentation for M as follows:

Define the module of generators FG to be the free graded F[x]-module with homogeneous basis

given by A = (α1x
s1 , . . . , αmx

sm) with degh(αjx
sj ) = sj and define π : FG → M by αjx

sj 7→ ajx
sj

for j ∈ {1, . . . ,m}. Then, π is a graded homomorphism. Observe that if the set of generators of M

were not homogeneous, then the requirement that degh(αjx
sj ) = degh(ajx

sj ) may not be fulfilled

since degh(ajx
sj ) may be undefined. For reference, FG can be expressed as a direct sum of shifted

graded free F[x]-modules, each with one basis element, as follows:

FG = F[x]⟨α1x
s1⟩ ⊕ · · · ⊕ F[x]⟨αmxsm⟩ = Σs1F⟨α1⟩ ⊕ · · · ⊕ ΣsmF⟨αm⟩ (E2)
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Define the module of relations FS by FS := ker(π) and define φ : FS → FG to be the inclusion

of ker(π) into FG. Note that ker(π) is a graded submodule of FS as it is the kernel of the graded

homomorphism π : FG → M , and φ is graded as the identity map. As with the non-graded case,

φ : FS → FG and π : FG → M correspond to a non-graded presentation of M . Since FS , FG are

graded F[x]-modules and φ, π are graded homomorphisms, this presentation of M is also a graded

presentation of M . ■

LetM be a finitely generated graded F[x]-module. Let a graded presentation ofM be given by φ : FS → FG
and π : FG →M with bases S = (σ1(x), . . . , σn(x)) of FS and A = (α1(x), . . . , αm(x)) of FG. In the non-graded

case, an SND (U,D, V ) of [φ]A,S , which exists since F[x] is a PID, gives us the following by Proposition 4.1.11:

1. A basis T = (τ1(x), . . . , τn(x)) of FG by [τi(x)]S = coli(V ).

2. A basis B = (β1(x), . . . , βm(x)) of FS by [βj(x)]A = colj(U).

3. The set of nonzero invariant factors f1, . . . , fr ∈ F[x] by fj = D(j, j).

Note that we write σi(x) and αj(x) here to emphasize that these elements are polynomials in x, i.e. the degree

of σi(x) and of αj(x) are generally not zero.

For the process described for Equation (E1) to make sense, i.e. shifting the summands of the (non-graded)

invariant factor decomposition, the basis B = (βj(x)) must be a homogeneous basis. Otherwise, degh(βj(x)) and

Σdegh(βj(x))F[x] would be undefined. If we have that B is homogeneous and that the nonzero invariant factors

{fj} are also homogeneous, then we can calculate a graded decomposition for M that would later correspond

to a graded invariant factor decomposition. We state this in more detail below.

Proposition 4.3.5. Let M be a finitely generated graded F[x]-module. Let φ : FS → FG, π : FG → M

correspond to a finite graded presentation on M with rank(FS) = n and rank(FG) = m.

If there exists a homogeneous basis {β1xs1 , . . . , βmxsm} of FG and nonzero elements xt1 , . . . , xtr ∈ F[x] with
divisibility relation xt1

∣∣ · · · ∣∣xtr such that {β1xs1+t1 , . . . , βrxsr+tr} is a basis for im(φ), then we have the

following graded isomorphism on M :

M
GrMod∼=

(
F[x]⟨β1xs1⟩

F[x]⟨β1xs1+t1⟩

)
⊕ · · · ⊕

(
F[x]⟨βrxsr ⟩

F[x]⟨βrxsr+tr ⟩

)
⊕ F[x]⟨βr+1x

sr+1⟩ ⊕ · · · ⊕ F[x]⟨βmxsm⟩ (E3)

Note that we write the basis elements βjx
sj ∈ FG such that degh(βjx

sj ) = sj .

Proof. Assume there does exist a homogeneous basis {βjxsj}mj=1 of FG and nonzero elements {xtj}rj=1 ∈ F[x].
For j ∈ {1, . . . , r}: F[x]⟨βjxsj+tj ⟩ is a graded submodule of F[x]⟨βjxsj ⟩ since it has a homogeneous

basis. Therefore, the quotient module F[x]⟨βjxsj ⟩ / F[x]⟨βjxsj+tj ⟩ is graded with homogeneous

components of degree q ∈ {sj , . . . , tj − 1} given by [k · βjxq] for k ∈ F nonzero.

By Proposition 4.1.5, (E3) is a F[x]-module isomorphism. For j ∈ {1, . . . , r}: the isomorphism

by (1) maps [βjx
q] ∈ F[x]⟨βjxsj ⟩/F[x]⟨βjxsj+tj ⟩ with q ∈ {sj , . . . , tj − 1} to π(βjxq) ∈ M . Since π

is a graded homomorphism, we have that

degh([βjx
q]) = q = degh(βjx

q) = degh(π(βjx
q))

Similarly, for j ∈ {r + 1, . . . ,m}, the isomorphism by (1) maps βjx
q ∈ F[x]⟨βjxsj ⟩ with q ≥ sj to

π(βjx
q) and degh(βjx

q) = q = degh(π(βjx
q)). Therefore, (E3) is a graded isomorphism. ■

We provide an example of this calculation below. Note that we have not yet proven that a homogeneous

basis {βjxsj} and a set of nonzero invariant factors {xtj} with the desired properties generally exists.
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Example 4.3.6. Let M be a graded Q[x]-module and define a graded presentation on M as follows: Let

S =
{
σ1x, σ2x

6, σ3x
8, σ4x

10
}
be a basis on the Q[x]-module FS of relations and let A =

{
α1x, α2x

2, α3x
3, α4x

4
}

be a basis on the Q[x]-module FG of generators. Observe that since S and A are homogeneous bases, FS and

FG are both graded Q[x]-modules. Let φ : FS → FG be given by the following matrix:

[φ]A,S =


1 4x5 0 3x9

0 x4 −x6 0

0 0 x5 −2x7
0 0 0 0


We can confirm by inspection that φ is a graded homomorphism. Assume that M = FG / im(φ), i.e. π is the

canonical quotient homomorphism. An SND (U1, D1, V1) of [φ]A,S is given below:

U1 =


1 2x −x2 0

0 1 0 −x2
0 0 1 2x

0 0 0 1

 D1 =


1 0 0 0

0 x4 0 0

0 0 x5 0

0 0 0 0

 V1 =


1 −2x5 −5x7 −11x9
0 1 x2 2x4

0 0 1 2x2

0 0 0 1


We can confirm this matrix factorization is correct by the following calculation:

(U1)
−1[φ]A,SV1 =


1 −2x x2 −4x3
0 1 0 x2

0 0 1 −2x
0 0 0 1



1 4x5 0 3x9

0 x4 −x6 0

0 0 x5 −2x7
0 0 0 0



1 −2x5 −5x7 −11x9
0 1 x2 2x4

0 0 1 2x2

0 0 0 1

 = · · · = D1

The matrix U1 ∈ GL(4,Q[x]) induces a new basis B = (βix
ti) on FG by [βix

ti ]A = coli(U), given below, along

with its corresponding diagonal element di = D1(i, i). Note that the basis elements of B can be written as βix
ti

with degh(βix
ti) = ti since the basis B consists of homogeneous elements (confirmed post-calculation).

β1x
t1 = (1)(α1)x = (α1)x with d1 = 1

β2x
t2 = (2x)(α1x) + (1)(α2x

2) = (2α1 + α2)x
2 with d2 = x4

β3x
t3 = (−x2)(α1x) + (1)(α3x

3) = (−α1 + α3)x
3 with d3 = x5

β4x
t4 = (−x2)(α2x

2) + (2x)(α3x
3) + (1)(α4x

4) = (−α2 + 2α3 + α4)x
4 with d4 = 0

By applying Proposition 4.1.5, we have the following (non-graded) isomorphism on M . Note that since B is a

homogeneous basis and the nonzero elements di ∈ F[x] are also homogeneous, the following decomposition is

also a graded isomorphism by Proposition 4.3.5:

M
GrMod∼=

(
Q[x]⟨β1x⟩
Q[x]⟨β1x⟩

)
⊕

(
Q[x]

〈
β2x

2
〉

Q[x]⟨x4 · β2x2⟩

)
⊕

(
Q[x]

〈
β3x

3
〉

Q[x]⟨x5 · β3x3⟩

)
⊕Q[x]

〈
β4x

4
〉

Since the only units of Q[x] are nonzero field elements, the nonzero entries of the SNF D1 of [φ]A,S have to be

homogeneous elements by uniqueness of SNFs. However, we can do row operations on the SNF (U1)
−1[φ]A,SV1 =

D1 without disturbing the nonzero elements of D, i.e. 1, x4 and x5. In particular, we can add any Q[x]-multiple

of the 4th row of D1 to rows 1, 2, and 3 of D1 without changing D1. However, this will affect the matrix that

determines the basis for FG. For example, we can do the following:

E
[4]
add

(
1, 4 ;x10

)
D1 =


1 0 0 x10

0 1 0 0

0 0 1 0

0 0 0 1



1 0 0 0

0 x4 0 0

0 0 x5 0

0 0 0 0

 =


1 0 0 0

0 x4 0 0

0 0 x5 0

0 0 0 0

 = D1
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Then, we can get another SND (U2, D1, V1) of [φ]A,S by considering the following factorization:

D1 = E
[4]
add

(
1, 4 ;x10

)
D1 = E

[4]
add

(
1, 4 ;x10

)
(U1)

−1[φ]A,SV1 =
(
U1E

[4]
add

(
1, 4 ;−x10

))−1

︸ ︷︷ ︸
Set this as (U2)

−1

[φ]A,SV1

Note that the inverse of the elementary transvection E
[4]
add

(
1, 4 ;x10

)
is given by E

[4]
add

(
1, 4 ;−x10

)
. Then, the

matrix U2 ∈ GL(4,Q[x]) determines a new basis P = (p1(x), . . . , p4(x)) of FG as follows:

U2 =


1 2x −x2 −x10
0 1 0 −x2
0 0 1 2x

0 0 0 1

 and

p1(x) = β1x

p2(x) = β2x
2

p3(x) = β3x
3

p4(x) = (−x10)(α1x) + β4x
4 = −α1x

11 + β4x
4

Then, the isomorphism by Proposition 4.1.5 on the SND (U2, D1, V1) of [φ]A,S , given below, is not a graded

isomorphism:

M
Mod∼=
(
F[x]⟨β1x⟩
F[x]⟨β1x⟩

)
⊕

(
F[x]

〈
β2x

2
〉

F[x]⟨x4 · β2x4⟩

)
⊕

(
F[x]

〈
β3x

3
〉

F[x]⟨x5 · β2x5⟩

)
⊕ F[x]

〈
−α1x

11 + β4x
4
〉

In particular, the summand F[x]
〈
−α1x

11 + β4x
4
〉
fails to be a graded Q[x]-module since it cannot be generated

by a homogeneous element.

The decomposition given by Proposition 4.3.5 is then transformed into a graded invariant factor decomposi-

tion by applying specific graded isomorphisms to each summand in the direct sum. We state these isomorphisms

in the following lemma.

Lemma 4.3.7. Let F[x]⟨αxs⟩ be the free graded F[x]-module generated by the element αxs with deg(αxs) =

s ∈ N0. Let x
t ∈ F[x] for some t ∈ N0 with t ̸= 0. Then, we have the following graded isomorphisms:

F[x]⟨αxs⟩
GrMod∼= ΣsF[x] and

F[x]⟨αxs⟩
F[x]⟨xt · αxs⟩

GrMod∼= Σs
(
F[x]

/
(xt)

)
Note that if t = 0, then xt = 1 is a unit of F[x] and F[x]⟨αxs⟩/F[x]⟨xt · αxs⟩ = 0.

Proof. Let φ : F[x]⟨αxs⟩ → ΣsF[x] be given by αxs 7→ (xs)(1). This is an isomorphism with inverse

(xs)(1) 7→ αxs. Let f ∈ F[x]⟨αxs⟩ be a homogeneous element. Then, f = k · αxs+r for some k ∈ F
nonzero and r ∈ N0 and

degh(f) = degh(k · αxs+r) = s+ r = degh
(
(xs+r)(1)

)
= degh(φ(f))

The quotients F[x] / (xt) and F[x]⟨αxs⟩ / F[x]⟨αxs+t⟩ are graded F[x]-modules with grading de-

termined by their coset representatives, well-defined since (xt) and F[x]⟨αxs+t⟩ are graded sub-

modules respectively. Then, the isomorphism F[x]⟨αxs⟩ / F[x]⟨αxs+t⟩ → Σs(F[x] / (xt)) given by

[αxs]→ (xs)[1] is graded similarly as in the case of φ. ■

By this lemma, the graded decomposition given by Proposition 4.3.5 can be transformed into a graded

invariant factor decomposition as follows, with summands that have a unit for xtj , i.e. tj = 0, removed from
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the decomposition.

M
GrMod∼=

(
F[x]⟨β1xs1⟩

F[x]⟨β1xs1+t1⟩

)
⊕ · · · ⊕

(
F[x]⟨βrxsr ⟩

F[x]⟨βrxsr+tr ⟩

)
⊕ F[x]⟨βr+1x

sr+1⟩ ⊕ · · · ⊕ F[x]⟨βmxsm⟩

GrMod∼= Σs1
(

F[x]⟨β1⟩
F[x]⟨β1xt1⟩

)
⊕ · · · ⊕ Σsr

(
F[x]⟨βr⟩

F[x]⟨βrxtr ⟩

)
⊕ Σsr+1F[x]⟨βr+1⟩ ⊕ · · · ⊕ ΣsmF[x]⟨βm⟩

GrMod∼= Σs1
(

F[x]
(xt1)

)
⊕ · · · ⊕ Σsr

(
F[x]
(xtr )

)
⊕ Σsr+1F[x]⊕ · · · ⊕ ΣsmF[x]

Observe that the set of grading shifts (s1, . . . , sm) are identified from the degree of the homogeneous basis

element deg(βjx
sj ). We provide an example of calculating a graded invariant factor decomposition of a module

below.

Example 4.3.8. LetM be the graded Q[x]-module as given in Example 4.3.6. We have calculated the following

graded decomposition on M by Proposition 4.3.5:

M
GrMod∼=

(
Q[x]⟨β1x⟩
Q[x]⟨β1x⟩

)
⊕

(
Q[x]

〈
β2x

2
〉

Q[x]⟨x4 · β2x2⟩

)
⊕

(
Q[x]

〈
β3x

3
〉

Q[x]⟨x5 · β3x3⟩

)
⊕Q[x]

〈
β4x

4
〉

Then, by application of Lemma 4.3.7, the graded invariant factor decomposition on M is given as follows:

M
GrMod∼= Σ2

(
Q[x]

/
(x4)

)
⊕ Σ3

(
Q[x]

/
(x5)

)
⊕ Σ4Q[x]

Note that the first summand with the basis element β1x becomes a trivial module. Recall that in Chapter 2,

we discussed how graded Q[x]-modules correspond to persistence modules over Q. Then, by Corollary 2.5.13,

we have the following isomorphism:

ΓPers(M)
Pers∼= I[2,2+4)

• ⊕ I[3,3+5)
• ⊕ I[4,∞)

• = I[2,6)• ⊕ I[3,8)• ⊕ I[4,∞)
•

where
Pers∼= refers to an isomorphism in the category PersQ of persistence modules over Q.
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Section 4.4. Matrix Reduction of Graded Matrices

Let M be a graded F[x]-module with a graded presentation given by φ : FS → FG and π : FG → M . In

Proposition 4.3.5, we stated that if there exists a homogeneous basis {βjxsj}mj=1 of FG and nonzero invariant

factors xt1 , . . . , xtr ∈ F[x] such that {β1xs1+t1 , . . . , βrxsr+tr} is a basis for im(φ), then the graded invariant

factor decomposition of M can be calculated from said basis. In this section and in Section 4.5, we argue

that we can always calculate such a basis, assuming we know of homogeneous bases A and S of FS and FG
respectively.

Our argument makes use of the general algorithm for the calculation of Smith Normal Decompositions

described in [AW92, Remark 5.3.4] for matrices over arbitrary Euclidean domains, as discussed in Section 4.1

after Example 4.1.14. This algorithm involves strategically performing matrix reduction on [φ]A,S , with V being

the product of elementary matrices corresponding to column reduction and U−1 being that for row reduction.

Since [φ]A,S is a matrix of a graded homomorphism, there are a number of restrictions on the entries of [φ]A,S
that makes matrix reduction more straightforward and allows a more simplified version of the algorithm by

[AW92, Remark 5.3.4].

Assume A and S are homogeneous bases. In this section, we consider four types of elementary matrices

used in matrix reduction and discuss how matrix reduction preserves the homogeneity of these bases. Then,

in Section 4.5, we present Algorithm 4.5.1. Matrix Reduction Algorithm for Graded SNDs, which calculates the

desired SND (U,D, V ) of [φ]A,S using only said types of elementary matrices.

Our first result is about the entries of matrices over F[x] corresponding to graded presentations.

Lemma 4.4.1. Let φ : N → M be a graded homomorphism between two free graded F[x]-modules N and M

with ordered homogeneous bases S = (σ1(x), . . . , σn(x)) and A = (α1(x), . . . , αm(x)) respectively. Let [φ] be

the matrix of φ relative to S and A, i.e. [φ] := [φ]A,S ∈ Mm,n(F[x]).

For all row indices j ∈ {1, . . . ,m} and column indices i ∈ {1, . . . , n} such that [φ](j, i) ̸= 0, [φ](j, i) is a

homogeneous element of F[x] and

degh

(
αj(x)

)
+ degh

(
[φ](j, i)

)
= degh

(
σi(x)

)
where degh(αj(x)) and degh(σi(x)) are defined by homogeneity of the bases S and A.

Proof. For brevity, write σi := σi(x) for i ∈ {1, . . . , n} and αj := αj(x) for j ∈ {1, . . . ,m}.

Let i ∈ {1, . . . , n} be a column index such that φ(σi) ̸= 0. Since φ : N → M is a graded

homomorphism by assumption, coli([φ]) is not a zero column and degh(σi) = degh(φ(σi)). By

definition of matrix of module homomorphisms, we have that coli([φ]) = [φ(σi)]A and

φ(σi) =

m∑
j=1

(
coli([φ])(j)αj

)
=

m∑
j=1

[φ](j, i)αj

Let j ∈ {1, . . . ,m} be a row index such that [φ](j, i) ̸= 0. Since φ(σi) is homogeneous of degree

degh(φ(σi)), the summand [φ](j, i)αj must be homogeneous of the same degree. Moreover, [φ](j, i)

must also be homogeneous. Otherwise, the product [φ](j, i)αj would not be homogeneous. Then, we

have that:

degh(σi) = degh
(
φ(σi)

)
= degh

(
[φ](j, i)αj

)
= degh

(
[φ](j, i)

)
+ degh(αj) .

■

Below, we provide an example of a graded homomorphism involving the persistent homology of some
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filtration, as discussed in Section 3.3.

Example 4.4.2. Let K• and K be given as in Example 3.2.3 and orient K with the vertex order Vert(K) =

(a, b, c, d). For convenience, an illustration of K and K• (without orientation) is copied below:

The 1st and 2nd graded chain modules of K• with coefficients in Q are given as follows, relative to the ordered

bases induced by the orientation Vert(K) = (a, b, c, d) on the simplicial complex K:

CGr
1 (K•;Q) = Q[x]

〈
abx, bcx, adx2, cdx2, acx3

〉
and CGr

2 (K•;Q) = Q[x]
〈
abcx4, acdx5

〉
The matrix [∂Gr

2 ] of the graded boundary map ∂Gr
2 : CGr

2 (K•;Q)→ CGr
1 (K•;Q) relative to the standard ordered

bases is given as follows:

[∂Gr
2 ] =



abcx4 acdx5

abx x3 0

bcx x3 0

adx2 0 −x3
cdx2 0 x3

acx3 −x x2


Observe that the nonzero entries of [∂Gr

2 ] satisfy the degree relation stated in Lemma 4.4.1. We list these below.

[∂Gr
2 ](1, 1) = x3 : degh( x3 ) + degh( abx ) = degh( abcx

4 )

[∂Gr
2 ](2, 1) = x3 : degh( x3 ) + degh( bcx ) = degh( abcx

4 )

[∂Gr
2 ](3, 2) = −x3 : degh( −x3 ) + degh( adx

2 ) = degh( acdx
5 )

[∂Gr
2 ](4, 2) = x3 : degh( x3 ) + degh( cdx

2 ) = degh( acdx
5 )

[∂Gr
2 ](5, 1) = −x : degh( −x ) + degh( acx

3 ) = degh( abcx
4 )

[∂Gr
2 ](5, 2) = x2 : degh( x2 ) + degh( acx

3 ) = degh( acdx
5 )

Note that Lemma 4.4.1 does not apply for zero entries since degh(0) is undefined.

Since Lemma 4.4.1 implies that the nonzero elements of the matrices over F[x] are homogeneous and that

their degrees are fixed by the degrees of the initial homogeneous bases (with the added assumptions stated

on the same lemma), we can show that elimination operations done on the matrix reduction algorithm for

graded SNDs must also preserve the homogeneity of the initial bases, i.e. the bases that they induce are also

homogeneous assuming we start with homogeneous bases.

Column operations on a matrix correspond to multiplication of said matrix on the right by an elementary

matrix (see Proposition A2.8 in Appendix A2). For clarity, we identify certain terminology involving column

reduction of matrices.

Definition 4.4.3. A column reduction operation on a matrix T ∈ Mm,n(F[x]) consists of the following:

i. a fixed row index r ∈ {1, . . . ,m},
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ii. a nonzero target entry T (r, k) with target column index k ∈ {1, . . . , n} to be eliminated in T ,

iii. a nonzero pivot entry T (r, p) with pivot column index p ∈ {1, . . . , n},

iv. a pivot multiplier f ∈ F[x] such that T (r, k) + f · T (r, p) = 0, and

v. an elementary transvection V := E
[n]
add(p, k ; f), multiplied to T on the right. Note that the pivot column

index p is the first argument and the target column index k is the second.

Then, the entry T (r, k) is eliminated in the product TV = TE
[n]
add(p, k ; f), i.e. (TV )(r, k) = 0.

Following the notation above, we can show that (TV )(r, k) = 0 by looking at the columns of the product

TV and using a column-wise description of V = E
[n]
add(p, k ; f): for all column indices i ∈ {1, . . . , n},

coli(TV ) = T coli(V ) = T coli

(
E
[n]
add(p, k ; f)

)
=

{
colk(T ) + f · colp(T ) if i = k

coli(T ) otherwise

Note that T and TV can differ only on the kth column. Then, the (r, k)th entry of TV would be zero, i.e. the

target entry T (r, k) is eliminated as follows:

colk(T )(r) + f · colp(T )(r) = T (r, k) + f · T (r, p) = 0

For arbitrary matrices over F[x], elimination operations as above generally cannot be done since f exists if and

only if the pivot entry T (r, p) divides the target entry T (r, k). However, assuming T = [φ] is as given in Lemma

4.4.1, the elements [φ](r, p) and [φ](r, k) are homogeneous and we have the following equivalence: [φ](r, p)
∣∣ [φ](r, k)

divisibility relation

 if and only if

degh
(
[φ](r, p)

)
≤ degh

(
[φ](r, k)

)
degree relation


Then, f ∈ F[x] is given by f = −[φ](r, k)/ [φ](r, p) assuming that degh([φ](r, p)) ≤ degh([φ](r, k)). The question

now is whether the basis induced by V ∈ GL(n,F[x]) and the remaining entries of colk([φ]V ) correspond to

homogeneous elements. The following proposition addresses this.

Proposition 4.4.4. Column Reduction Preserves Homogeneity.

Let φ : N → M be a graded homomorphism between two free graded F[x]-modules N and M with ordered

homogeneous bases S = (σ1(x), . . . , σn(x)) and A = (α1(x), . . . , αm(x)) respectively. Let [φ] be the matrix of φ

relative to S and A, i.e. [φ] := [φ]A,S ∈ Mm,n(F[x]).

Let p, k ∈ {1, . . . , n} be distinct column indices and r ∈ {1, . . . ,m} be a row index such that the target [φ](r, k)

and the pivot [φ](r, p) are both nonzero and degh([φ](r, p)) ≤ degh([φ](r, k)). If f ∈ F[x] is nonzero and

homogeneous such that

degh

(
[φ](r, k)

)
= degh(f) + degh

(
[φ](r, p)

)
then the basis T = (τ1(x), . . . , τn(x)) of N induced by the elementary transvection V := E

[n]
add(p, k ; f) by

[τi]S = coli(V ) is homogeneous.

Proof. Let f ∈ F[x] be nonzero and homogeneous such that degh([φ](r, k)) = degh(f) + degh([φ](r, p)). For

brevity, let σi := σi(x), τi := τi(x) and αj := αj(x).

Since V := E
[n]
add(p, k ; f) differs from the identity matrix In only in the (p, k)th entry, we have

that τi = σi and τi is homogeneous for all i ∈ {1, . . . , n} with i ̸= a. We need to check that τk ∈ N
is also homogeneous. Since [τk]S = colk(V ) = colk(In) + f · colp(In), we have that τk = σk + f · σp.
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For τk to be homogeneous, we need to show that degh(σk) = degh(f · σp):

degh(f · σp) = degh(f) + degh(σp) by homogeneity of f and σp

= degh([φ](r, k))− degh([φ](r, p)) by assumption on f ∈ F[x]
+ degh(σp)

= degh([φ](r, k))− degh([φ](r, p))

+ degh([φ](r, p)) + degh(αr) by Lemma 4.4.1 on the [φ](r, p) ̸= 0

= degh([φ](r, k)) + degh(αr)

= degh(σk) by Lemma 4.4.1 on [φ](r, k) ̸= 0

Since degh(σk) = degh(f · σp), τk ∈ N is homogeneous with degh(τk) = degh(σk). Therefore,

T = (τi)
n
i=1 is a homogeneous basis of N . ■

Note that the statement of Proposition 4.4.4 applies even when f ∈ F[x], as denoted above, is not used to

eliminate entries, i.e. it is not required that [φ](r, k) + f · [φ](r, p) = 0, only that [φ](r, k) + f · [φ](r, p) results in
either zero or a homogeneous element of the same degree. While this is not critical for the reduction algorithm,

it does allow some steps that may be more preferable when working by hand.

Observe that the key part of the proof of Proposition 4.4.4 is the existence of a row index r ∈ {1, . . . ,m}
such that both [φ](r, k) and [φ](r, p) are nonzero, in that they determine the degree of the element f ∈ F[x].
Note that we use the degree relation from Lemma 4.4.1 on both [φ](r, k) and [φ](r, p), which require them to

both be nonzero. If such a row index r does not exist, then it is possible for the nonzero entries of [φ]V to be

homogeneous but the basis T = (τi) induced by V to not be a homogeneous basis. A trivial example would

involve a zero column on [φ], wherein if the nonzero entries of [φ] are homogeneous and colp([φ]) is the zero

column, then [φ]E
[n]
add(p, k f) for any column index k and any element f ∈ F[x] would also have entries that are

either zero or homogeneous. We saw a similar issue happen with row reduction earlier in Example 4.3.6 wherein

the matrix U2 ∈ GL(4,F[x]) produced a non-homogeneous basis since the 4th row is the zero row. Fortunately,

column operations of this type are generally not required for matrix reduction since these tend to create more

nonzero entries, i.e. the opposite goal of matrix reduction.

As denoted above, [φ]V = [φ]A,SV = [φ]A,T , i.e. [φ]V corresponds to the matrix of φ relative to the bases

T = (τi(x))
n
i=1 of N and A = (αj(x))

m
j=1 of M , Since we have shown that T is a homogeneous basis of N ,

Lemma 4.4.1 also applies for [φ]V = [φ]A,T , i.e. for all nonzero entries [φ]A,T (j, i),

degh

(
αj(x)

)
+ degh

(
[φ]A,T (j, i)

)
= degh

(
τi(x)

)
.

An immediate consequence of this is that we can do elimination by column reduction finitely many times and

the resulting matrices from said operation will also preserve the homogeneity of the initial bases. Below, we

provide an example of this column reduction process in action. Note that the following example does not use

the algorithm by [AW92, Remark 5.3.4] (Algorithm 4.5.1) since we have not established that row reduction

preserves homogeneity. Instead, this example more closely resembles the column reduction algorithm discussed

in the next section.

Example 4.4.5. Let K• and K be given as in Example 3.2.3 and as illustrated below.
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The 0th and 1st graded chain modules of K• with coefficients in Q are given as follows, relative to ordered bases

induced by the orientation Vert(K) = (a, b, c, d) on the simplicial complex K:

CGr
0 (K•;Q) = Q[x]⟨a, b, cx, dx⟩ and CGr

1 (K•;Q) = Q[x]
〈
abx, bcx, adx2, cdx2, acx3

〉
Below, we identify the matrix [∂Gr

1 ] of the 1st graded boundary morphism ∂Gr
1 : CGr

1 (K•;Q) → CGr
0 (K•;Q)

relative to the same ordered bases:

[∂Gr
1 ] =

abx bcx adx2 cdx2 acx3

a −x 0 −x2 0 −x3
b x −x 0 0 0

cx 0 1 0 x x2

dx 0 0 x −x 0




Given below is a sequence Q1, Q2, . . . of matrices Qn ∈ M4,5(F[x]) resulting from successive column reduction

operations on Q0 := [∂Gr
1 ], with the following color scheme:

chosen pivot entry , target entry for elimination , pivot multiplier , affected column

Q1 := Q0E
[5]
add(3, 4 ; 1) =


−x 0 −x2 0 −x3
x −x 0 0 0

0 1 0 x x2

0 0 x −x 0



1 0 0 0 0

0 1 0 0 0

0 0 1 1 0

0 0 0 1 0

0 0 0 0 1

 =


−x 0 −x2 −x2 −x3
x −x 0 0 0

0 1 0 x x2

0 0 x 0 0



Q2 := Q1E
[5]
add(2, 4 ;−x) =


−x 0 −x2 −x2 −x3
x −x 0 0 0

0 1 0 x x2

0 0 x 0 0



1 0 0 0 0

0 1 0 −x 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 =


−x 0 −x2 −x2 −x3
x −x 0 x2 0

0 1 0 0 x2

0 0 x 0 0



Q3 := Q2E
[5]
add(1, 4 ;−x) =


−x 0 −x2 −x2 −x3
x −x 0 x2 0

0 1 0 0 x2

0 0 x 0 0



1 0 0 −x 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 =


−x 0 −x2 0 −x3
x −x 0 0 0

0 1 0 0 x2

0 0 x 0 0



Q4 := Q3E
[5]
add

(
2, 5 ;−x2

)
=


−x 0 −x2 0 −x3
x −x 0 0 0

0 1 0 0 x2

0 0 x 0 0



1 0 0 0 0

0 1 0 0 −x2
0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 =


−x 0 −x2 0 −x3
x −x 0 0 x3

0 1 0 0 0

0 0 x 0 0


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Q5 := Q4E
[5]
add

(
1, 5 ;−x2

)
=


−x 0 −x2 0 −x3
x −x 0 0 x3

0 1 0 0 0

0 0 x 0 0



1 0 0 0 −x2
0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 =


−x 0 −x2 0 0

x −x 0 0 0

0 1 0 0 0

0 0 x 0 0



Then, we have Q5 = [∂Gr
1 ]V with V ∈ GL(5,F[x]) given as follows, with each successive elementary transvection

matrix multiplied on the right of Qi:

V =

first column elimination︷ ︸︸ ︷
E
[5]
add(3, 4 ; 1) E

[5]
add(2, 4 ;−x)︸ ︷︷ ︸

second column elimination

· · ·

fifth and last column elim.︷ ︸︸ ︷
E
[5]
add

(
1, 5 ;−x2

)
=

abx 1 0 0 −x −x2
bcx 0 1 0 −x −x2
adx2 0 0 1 1 0

cdx2 0 0 0 1 0

acx3 0 0 0 0 1




Then, V ∈ GL(5,F[x]) induces a new basis T = (τ1(x), . . . , τ5(x)) by [τi(x)] = coli(V ), i.e.

τ1(x) = (1)(abx) = (ab)x

τ2(x) = (1)(bcx) = (bc)x

τ3(x) = (1)(adx2) = (ad)x2

τ4(x) = (−x)(abx) + (−x)(bcx) + (1)(adx2) = (−ab− bc+ ad)x2

τ5(x) = (−x2)(abx) + (−x2)(bcx) + (1)(acx3) = (−ab− bc+ ac)x3

Observe that T is a homogeneous basis for CGr
2 (K•;Q) and that the nonzero entries of Q5 are as expected by

Lemma 4.4.1. For example, at the (1, 3)th entry of Q5, we have that

degh(a) + degh
(
Q5(1, 3)

)
= 0 + degh(−x2) = 3 = degh

(
τ3(x)

)
= degh(adx

2)

We have a similar result for elimination by row reduction. Row operations on a matrix correspond to

multiplication of said matrix on the left by an elementary matrix (Proposition A2.7 in Appendix A2). For

clarity, we identify certain terminology involving elimination by row reduction below.

Definition 4.4.6. A row reduction operation on a matrix T ∈ Mm,n(F[x]) consists of the following:

i. a fixed column index c ∈ {1, . . . , n},

ii. a nonzero target entry T (k, c) with target row index k ∈ {1, . . . ,m} to be eliminated in T ,

iii. a nonzero pivot entry T (p, c) with pivot row index p ∈ {1, . . . ,m},

iv. a pivot multiplier f ∈ F[x] such that T (k, c) + f · T (p, c) = 0, and

v. an elementary transvection U−1 := E
[m]
add(k, p ; f), multiplied to T on the left. Note that the pivot row

index p is the second argument and the target row index k is the first, and that U = E
[m]
add(k, p ;−f).

Then, the entry T (k, c) is eliminated in the product U−1T = E
[m]
add(k, p ; f)T , i.e. (U

−1T )(k, c) = 0.

Remark. We define U−1 := E
[m]
add(k, p ; f), as opposed to setting U := E

[m]
add(k, p ; f), since we want to interpret

the resulting matrix as a change of basis on the codomain of homomorphisms.

Following the notation above, we can show that (U−1T )(k, c) = 0 by examining the the rows of the product
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U−1T ∈ Mm,n(F[x]) and using a row-wise description of U−1 = E
[m]
add(k, p ; f): for all row indices j ∈ {1, . . . ,m},

rowj(U
−1T ) = rowj(U

−1)T = rowj

(
E
[m]
add(k, p ; f)

)
T =

{
rowk(T ) + f · rowp(T ) if j = k

rowj(T ) otherwise

As with the case of column reduction, when T = [φ] is as given in Lemma 4.4.1, the elimination process becomes

more straightforward. We have the following result involving row reduction of matrices given by Lemma 4.4.1.

Proposition 4.4.7. Row Reduction Preserves Homogeneity.

Let φ : N → M be a graded homomorphism between two free graded F[x]-modules N and M with ordered

homogeneous bases S = (σ1, . . . , σn) and A = (α1, . . . , αm) respectively. Let [φ] be the matrix of φ relative to

S and A, i.e. [φ] := [φ]A,S ∈ Mm,n(F[x]).

Let p, k ∈ {1, . . . ,m} be distinct row indices and c ∈ {1, . . . , n} be a column index such that the pivot [φ](p, c)

and the target [φ](k, c) are both nonzero and degh([φ](p, c)) ≤ degh([φ](k, c)). If f ∈ F[x] is nonzero and

homogeneous such that

degh

(
[φ](k, c)

)
= degh(f) + degh

(
[φ](p, c)

)
then the basis B = (β1(x), . . . , βm(x)) of M induced by the elementary transvection U := E

[n]
add(k, p ;−f) by

[βj ]A = coli(U) is homogeneous.

Proof. Let f ∈ F[x] be nonzero and homogeneous such that degh([φ](k, c)) = degh(f) + degh([φ](p, c)).

For brevity, let σi := σi(x), αj := αj(x), and βj := βj(x). Note that while U := E
[n]
add(k, p ;−f) ∈

GL(m,F[x]) corresponds to a row operation, the basis B = (β1, . . . , βm) is determined by the columns

of U .

For j ∈ {1, . . . ,m} with j ̸= p, colj(U) = colj(Im) and βj = αj is homogeneous. Consider the

pth column of U . Since [βp]A = colp(U) = colp(Im)− f · colk(Im), βp = αp − f · αk. For βp ∈ M to

be homogeneous, we need to show that degh(αp) = degh(−f · αk). Note that degh(−f) = degh(f).

degh(f · αk) = degh(f) + degh(αk) by homogeneity of f and αk

= degh
(
[φ](k, c)

)
−
(
[φ](p, c)

)
by assumption on f ∈ F[x]

+ degh(αk)

= degh
(
[φ](k, c)

)
− degh

(
[φ](p, c)

)
+ degh(σc)− degh

(
[φ](k, c)

)
by Lemma 4.4.1 on [φ](k, c) ̸= 0

= −degh
(
[φ](p, c)

)
+ degh(σc)

= degh(αp) by Lemma 4.4.1 on [φ](p, c) ̸= 0

Since degh(αp) = degh(−f · αk), βp ∈ M is homogeneous with degh(βp) = degh(αp). Therefore,

B = (βj)
m
j=1 is a homogeneous basis. ■

Observe that, as denoted above, U−1[φ] = U−1[φ]A,S = [φ]B,S , i.e. U
−1[φ] is the matrix of φ relative to

the bases S = (σi(x))
n
i=1 of N and B = (βj(x))

m
j=1 of M . Since we have shown that B is a homogeneous basis,

then Lemma 4.4.1 applies to U−1[φ] = [φ]B,S , i.e. for all nonzero entries [φ]B,T (j, i):

degh

(
βj(x)

)
+ degh

(
[φ]B,S(j, i)

)
= degh

(
σi(x)

)
.

As with the case for column reduction, we can do elimination by row reduction finitely many times and the

resulting matrices will also preserve the homogeneity of the initial bases and that of its entries. Below, we
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continue Example 4.4.5 and perform row reduction.

Example 4.4.8. We continue from Example 4.4.5. We currently have that Q5 = [∂Gr
1 ]V with

Q5 =


−x 0 −x2 0 0

x −x 0 0 0

0 1 0 0 0

0 0 x 0 0

 [∂Gr
1 ] =


−x 0 −x2 0 −x3
x −x 0 0 0

0 1 0 x x2

0 0 x −x 0

 V =


1 0 0 −x −x2
0 1 0 −x −x2
0 0 1 1 0

0 0 0 1 0

0 0 0 0 1


We perform the following row operations on Q5, as written below with the following color scheme:

chosen pivot entry , target entry for elimination , pivot multiplier , affected row

Q6 := E
[4]
add(1, 4 ;x)Q5 =


1 0 0 x

0 1 0 0

0 0 1 0

0 0 0 1



−x 0 −x2 0 0

x −x 0 0 0

0 1 0 0 0

0 0 x 0 0

 =


−x 0 0 0 0

x −x 0 0 0

0 1 0 0 0

0 0 x 0 0



Q7 := E
[4]
add(2, 3 ;x)Q6 =


1 0 0 0

0 1 x 0

0 0 1 0

0 0 0 1



−x 0 0 0 0

x −x 0 0 0

0 1 0 0 0

0 0 x 0 0

 =


−x 0 0 0 0

x 0 0 0 0

0 1 0 0 0

0 0 x 0 0



Q8 := E
[4]
add(1, 2 ; 1)Q7 =


1 1 0 0

0 1 0 0

0 0 1 0

0 0 0 1



−x 0 0 0 0

x 0 0 0 0

0 1 0 0 0

0 0 x 0 0

 =


0 0 0 0 0

x 0 0 0 0

0 1 0 0 0

0 0 x 0 0



Note that the elementary transvection for each row operation is multiplied on the left of Qi. Let U ∈ GL(4,F[x])
such that U−1Q5 = U−1[∂Gr

1 ]V . Then, U−1 is given as follows:

U−1 =

third row elimination︷ ︸︸ ︷
E
[4]
add(1, 2 ; 1) ·E

[4]
add(2, 3 ;x)︸ ︷︷ ︸

second row elimination

·

first row elimination︷ ︸︸ ︷
E
[4]
add(1, 4 ;x) =


1 1 x x

0 1 x 0

0 0 1 0

0 0 0 1


Since the inverse of E

[m]
add(a, b ; f) is given by E

[m]
add(a, b ;−f), we can calculate U as follows:

U =

(
E
[4]
add(1, 2 ; 1) E

[4]
add(2, 3 ;x) E

[4]
add(1, 4 ;x)

)−1

=

inverse corr. to
first row elimination︷ ︸︸ ︷
E
[4]
add(1, 4 ;−x) E

[4]
add(2, 3 ;−x)︸ ︷︷ ︸
inverse corr. to

second row elimination

inverse corr. to
third row elimination︷ ︸︸ ︷
E
[4]
add(1, 2 ;−1)

=

a 1 −1 0 −x
b 0 1 −x 0

cx 0 0 1 0

dx 0 0 0 1



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Then, the basis B = (β1(x), . . . , β4(x)) of CGr
0 (K•;Q) given by [βj(x)] = colj(U) is as follows:

β1(x) = (1)(a) = a

β2(x) = (−1)(a) + (1)(b) = −a+ b

β3(x) = (−x)(b) + (1)(cx) = (−b+ c)x

β4(x) = (−x)(a) + (1)(dx) = (−a+ d)x

Observe that B is a homogeneous basis and that the nonzero entries of Q8 are as expected by Lemma 4.4.1.

The last two types of elementary matrices involved in matrix reduction are elementary permutations

and elementary dilations. In the proposition below, we claim that these two kinds of matrices also preserve

homogeneity of bases. Note that, unlike the case for elementary transvections in column and row reduction, the

elementary permutations and dilations are not restricted by the entries of the matrix being reduced.

Proposition 4.4.9. Let N be a free graded F[x]-module with ordered homogeneous basis S = (σ1, . . . , σn). If

V ∈ GL(n,F[x]) is an elementary permutation or elementary dilation over F[x], then the basis T = (τ1, . . . , τn)

of N by [τi]S = coli(V ) is homogeneous.

Proof. We examine two cases. Assume that V = E
[n]
swap(k1, k2) is an elementary permutation with distinct

indices k1, k2 ∈ {1, . . . , n}, Note that if k1 = k2, then V = In and T is trivially a homogeneous

basis. For i ∈ {1, . . . , n} with i ̸= k1 and i ̸= k2, τi = σi. Since colk1(V ) = colk2(In), τk1 = σk2
is homogeneous. Similarly, colk2(V ) = colk1(In) and τk2 = σk1 is homogeneous. Therefore, T is a

homogeneous basis.

Assume that V = E
[n]
dilate(k, µ) is an elementary dilation over F[x] with index k ∈ {1, . . . , n} and

µ ∈ (F[x])× = F[x] \ {0}. For i ∈ {1, . . . , n} with i ̸= k, τi = σi. Since colk(V ) = µ · colk(In) and

µ is a nonzero homogeneous element of degree 0, τk = µσk and degh(τk) = degh(µσk) = degh(σk).

Therefore, T is a homogeneous basis. ■

Then, multiplication on the left (for row reduction) and on the right (for column reduction) by an elemen-

tary dilation or elementary permutation over F[x] will preserve the homogeneity of the initial bases and Lemma

4.4.1 applies to the resulting matrix.

Putting it all together, any reduction algorithm on a matrix over F[x] that satisfy Lemma 4.4.1 that

involves a finite product of elementary permutations, elementary transvections, and elementary transvections

that satisfy Proposition 4.4.4 or Proposition 4.4.7 over F[x] will produce a matrix that has zero or homogeneous

elements and the bases they produce will also be homogeneous (assuming we start with homogeneous bases).
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Section 4.5. An Ungraded SND Algorithm in the Graded Case

In this section, we present and discuss the algorithm for finding SNDs given [AW92, Remark 5.3.4] optimized

for the case of matrices of graded homomorphisms relative to homogeneous bases.

Algorithm 4.5.1. Matrix Reduction Algorithm for Graded SNDs.

Input : [φ] ∈ Mm,n(F[x]) as given in the hypothesis of Lemma 4.4.1, i.e. φ is a graded F[x]-module

homomorphism relative to homogeneous bases.

Output : A Smith Normal Decomposition (U,D, V ) of [φ] with U ∈ GL(m,F[x]), V ∈ GL(n,F[x]) and

D ∈ Mm,n(F[x]).

1. set D0 := [φ].

2. for increasing indices k := 1, . . . ,min(m,n) do

3. if Dk−1(j, i) = 0 for all j ∈ {k, . . . ,m} and i ∈ {k, . . . , n} then
4. set Dmin(m,n) := Dk−1.

5. for indices i := k, . . . ,min(m,n) do set Ui := Im and Vi := In.

6. break. ▷ stop the for-loop, Dmin(m,n) is in SNF.

7. find a row index rk ∈ {k, . . . ,m} and a column index ck ∈ {k, . . . ,m} such that

degh
(
Dk−1(rk, ck)

)
= min

{
degh

(
Dk−1(j, i)

)
: j ∈ {k, . . . ,m}, i ∈ {k, . . . , n}, Dk−1(j, i) ̸= 0

}
.

8. set Uk,k := E
[m]
swap(k, rk), Vk,k := E

[n]
swap(k, ck) and Wk := Uk,kDk−1Vk,k.

9. for increasing column index i := k + 1, . . . , n do

10. set fk,i := −Wk(k, i)/Wk(k, k) and Vk,i := E
[n]
add(k, i ; fk,i).

11. set Vk := Vk,kVk,k+1 · · ·Vk,n.
12. for increasing row index j := k + 1, . . . ,m do

13. set gk,j := −Wk(j, k)/Wk(k, k) and Uk,j := E
[m]
add(j, k ;−gk,j). ▷ (Uk,j)

−1 = E
[m]
add(j, k ; fk,k)

14. set Uk := Uk,kUk,k+1 · · ·Uk,m. ▷ (Uk)
−1 = (Uk,m)−1(Uk,m−1)

−1 · · · (Uk,k)−1

15. set Dk := (Uk)
−1Dk−1Vk.

16. set U := U1U2 · · ·Umin(m,n), V := V1V2 · · ·Vmin(m,n).

17. set D := Dmin(m,n).

18. return (U,D, V )

Remarks. (1) This algorithm is written such that no variable is re-defined, e.g. for [φ] ∈ M3,4(F[x]), the matrix

D2 is defined once in Line 15 at the k = 2 loop and not re-defined in later loops. This is done

to help with exposition.

(2) We refer to [AW92, Remark 5.3.4] for the correctness of Algorithm 4.5.1, i.e. that the result

(U,D, V ) is indeed an SND of [φ] (as denoted above).

For the rest of this section, we discuss how the assumption of [φ] being given as in Lemma 4.4.1 allows

certain optimizations in the algorithm and how the matrix operations in the algorithm preserve the homogeneity

of the initial matrices. In particular, we examine 4 major steps that are done for each kth iteration of the for-loop

starting in Line 2 of Algorithm 4.5.1:

Step A. Check if the matrix Dk is in Smith Normal Form. If not, continue.

Step B. Choose an appropriate pivot and perform the appropriate row and column permutations.

Step C. Eliminate the entries to the right of the pivot by column reduction.

Step D. Eliminate the entries below the pivot by row reduction.
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We expand on what happens for each of these steps below.

Step A. Checking the Result of the Previous Iteration: Lines 3 to 7 of Algorithm 4.5.1.

The algorithm in [AW92, Remark 5.3.4] examines the submatrix Dk−1[k :m, k :n] of Dk−1, where Dk−1 is the

result of the previous iteration, and Dk−1[k :m, k :n] is obtained by removing columns 1, . . . , k − 1 and rows

1, . . . , k − 1 of Dk−1, i.e. Dk−1 can be expressed as the following block matrix:

Dk−1 =

(
diag(d1, . . . , dk−1) 0

0 Dk−1[k :m, k :n]

)
where d1, . . . , dk−1 are to be the nonzero diagonal elements of the SNF D of [φ]. There are two cases:

Case 1: If the submatrix Dk−1[k :m, k :n] is the zero matrix, then Dk−1 is already in Smith Normal Form

and we do not need to do any more matrix operations. That is, Dk−1 is the Smith Normal Form

of [φ]. Note that we set Dmin(m,n) := Dk−1 in Line 4, as opposed to defining D := Dk−1 right

there, for consistency. The break keyword in Line 6 tells us to stop the for-loop and proceed

directly to Line 16. Then, at Line 17, we define D := Dmin(m,n).

Case 2: If the submatrix Dk−1[k :m, k :n] is not the zero matrix, then Dk−1 is not in Smith Normal Form.

The goal of the kth iteration is then to find matrices Uk ∈ GL(m,F[x]) and Vk ∈ GL(n,F[x]) such
that

(Uk)
−1Dk−1Vk = Dk =

(
diag(d1, . . . , dk−1, dk) 0

0 Dk[k+1:m, k+1:n]

)
where Dk is the end result of this iteration and passed to the next, i.e. the matrix Dk determines

the kth diagonal element of the Smith Normal Form of D. We apply the appropriate elementary

matrices on Dk−1 to achieve this.

Below, we provide an example of a matrix on which Algorithm 4.5.1 stops at some kth iteration and another

where it does not and continues.

Example 4.5.2. Let A ∈ M4,4(F[x]) and B ∈ M4,4(F[x]) be given below:

A =


1 0 0 0

0 5x 2 0

0 x2 3x 3

0 4 −2x 2x2

 and B =


1 0 0 0

0 x2 0 0

0 0 0 0

0 0 0 0


We can view the matrix A to be the matrix D1 relative to Algorithm 4.5.1, i.e. this is the matrix that is processed

in the iteration with k = 2. Then, A is not in Smith Normal Form and we consider the submatrix A[2:4, 2:4],

highlighted in red below:

A =


1 0 0 0

0 5x 2 0

0 x2 3x 3

0 4 −2x 2x2

 with A[2:4, 2:4] =

5x 2 0

x2 3x 3

4 −2x 2x2


Since A[2:4, 2:4] is not the zero matrix, we proceed with the calculation.

In contrast, we can assume that the matrix B corresponds to the matrix D2 relative to Algorithm 4.5.1, i.e.

the matrix processed in the iteration with k = 3. Then, Algorithm 4.5.1 concludes that B is in Smith Normal
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Form since the submatrix B[3:4, 3:4], highlighted in red below, is the zero matrix.

B = D2 =


1 0 0 0

0 x2 0 0

0 0 0 0

0 0 0 0


Then, the for-loop stops here and sets Dmin(m,n) = D2 = B in Line 4 and D = B in Line 17 of Algorithm 4.5.1.

Step B. On Selection of Pivot Elements: Lines 7-8 of Algorithm 4.5.1

The next step involves finding an element in the submatrix Dk−1[k :m, k :n] that can be used to eliminate any

nonzero entry in Dk−1[k :m, k :n] as necessary. For convenience, we call this element the pivot, consistent with

the terminology for our reduction operations by Definition 4.4.3 and Definition 4.4.6.

This pivot, given in Line 7 of Algorithm 4.5.1 by Dk−1(rk, ck), is an element that has minimal degree across

the nonzero entries of Dk−1, where the term degree refers to the Euclidean function deg(−) on a Euclidean

domain. Since the pivot is chosen to be of minimal degree, it can be shown that any nonzero element of

Dk−1[k :m, k :n] can be eliminated by a finite number of elementary row/column operations. Note that if the

matrix [φ] is over a field F, then any nonzero element can serve as the pivot since deg(µ) = 1 for all nonzero

µ ∈ F.

Observe that, by Lemma 4.4.1, the nonzero entries of [φ] are homogeneous and are of the form kxt for

some k ∈ F and t ∈ N0. Then, the degree deg(−) on F[x] as a Euclidean domain and the degree degh(−) on

F[x] as a graded ring agree on the entries of the matrices involved. Moreover, if the chosen pivot is kxs ∈ F[x]
for some k ∈ F and s ∈ N0, the pivot multiplier required to eliminate a nonzero entry k′xt can immeidately

be determined by k′xt /kxs = (k′ /k)xt−s since t ≤ s by minimality of the degree of the chosen pivot. This is

reflected in the Step C involving column reduction and Step D involving row reduction.

We then apply appropriate permutations on Dk−1 such that the pivot Dk−1(rk, ck) is found on the

(k, k)th entry. Relative to the submatrix Dk−1[k :m, k :n], we want the pivot to be the (1, 1)th entry post-

permutation. The row permutation is given by Uk,k := E
[m]
swap(k, rk), which swaps rows k and rk of Dk−1 in

the product (Uk,k)
−1Dk−1. Note that (E

[m]
swap(k, rk))

−1 = E
[m]
swap(k, rk). The column permutation is given by

Vk,k := E
[n]
swap(k, ck), which swaps columns k and ck of Uk,kDk−1 in the product Uk,kDk−1Vk,k. We save this

permuted matrix as Wk and perform the matrix operations on Wk.

Note that, by Proposition 4.4.9 (permutations preserve homogeneity), the homogeneity of the entries

of Wk and of the bases induced by the multiplication of the permutation matrices Uk,k = E
[m]
swap(k, rk) and

Vk,k = E
[n]
swap(k, ck) are preserved. We provide an example of this calculation below.

Example 4.5.3. Let [∂Gr
1 ] ∈ M4,5(F[x]) be as given in Example 4.4.5. For convenience, the description of [∂Gr

1 ]

is provided below. We apply Algorithm 4.5.1 on [∂Gr
1 ]. Following the notation in the algorithm, we have that

D0 := [∂Gr
1 ]. At the k = 1 iteration, the entry D0(3, 2), highlighted in blue below, can serve as the pivot.

D0 := [∂Gr
1 ] =

abx bcx adx2 cdx2 acx3

a −x 0 −x2 0 −x3
b x −x 0 0 0

cx 0 1 0 x x2

dx 0 0 x −x 0




Then, we permute the rows of D0 by U1,1 = E
[4]
swap(1, r1) with r1 := 3 and columns of D0 by V1,1 = E

[5]
swap(1, c1)
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with c1 := 2 as follows. Highlighted in green are the rows and columns of the pivot D0(r1, c1) = 1 and in

orange are those of the entry D0(1, 1) = −x.

U1,1D0V1,1 = E
[4]
swap(1, 3)D0E

[5]
swap(1, 2) =


0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1



−x 0 −x2 0 −x3
x −x 0 0 0

0 1 0 x x2

0 0 x −x 0



0 1 0 0 0

1 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


=


1 0 0 x x2

−x x 0 0 0

0 −x −x2 0 −x3
0 0 x −x 0

 =:W1

with W1 ∈ M4,5(F[x]) as denoted in Algorithm 4.5.1.

Step C. On Elimination by Column Reduction: Lines 9-11 of Algorithm 4.5.1

The matrices Vk,k+1, Vk,k+2, . . . , Vk,n ∈ GL(n,F[x]) correspond to column operations that eliminate the entries

to the left of the pivot Wk(k, k). Recall that any nonzero homogeneous element of F[x] divides any nonzero

homogeneous element of equal or greater degree. Since the pivot Wk(k, k) is of minimal degree by construction,

we can eliminate any nonzero entry Wk(k, i) to the left of Wk(k, k) with i ∈ {k + 1, . . . , n} by addition of

fk,i ·Wk(k, k) with fk,i ∈ F[x] homogeneous.

Note that since none of the transvections Vk,i := E
[n]
add(k, i ; fk,i) act on the kth columns of Wk and all of

them add a fk,i-multiple of the kth column of Wk, the order in which Vk,i is multiplied to Wk does not matter

for the definition of Vk,i. In particular, colk(Wk) = colk(WkVk,i) for any i ∈ {k + 1, . . . , n}. Therefore, we can

define fk,i for each transvection Vk,i relative to Wk, as done in Line 10, as opposed to a matrix product like

WkVk,k+1 · · ·Vk,i−1 that accounts for matrix operations that are already done.

Observe that if Wk(k, i) = 0, then there is nothing to eliminate. In that case, fk,i = 0, E
[n]
add(k, i ; 0) = In,

and homogeneity is trivially preserved. However, if Wk(k, i) ̸= 0, then fk,i must be homogeneous with

degh
(
fk,i
)
+ degh

(
Wk(k, k)

)
= degh

(
Wk(k, i)

)
.

Then, Proposition 4.4.4 (column reduction preserves homogeneity) applies and these column reduction opera-

tions preserve the homogeneity of the bases and of the entries. We provide an example below.

Example 4.5.4. Continue Example 4.5.3. For reference, a description of W1 ∈ M4,5(Q[x]) is given below, with

the pivot entry W1(1, 1) highlighted in blue and the target elements , i.e. the elements to the left of the

pivot, highlighted in red .

W1 =


1 0 0 x x2

−x x 0 0 0

0 −x −x2 0 −x3
0 0 x −x 0


Below, we define the elementary transvections E

[5]
add(1, i ; f1,i) for i ∈ {2, . . . , 5} used to eliminate the entry

W1(1, i) with the pivot multiplier f1,i highlighted in orange .
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i = 2 : f1,2 = −W1(1, 2)

W1(1, 1)
= 0 and V1,2 := E

[5]
add

(
1, 2 ; 0

)
= I5 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



i = 3 : f1,3 = −W1(1, 3)

W1(1, 1)
= 0 and V1,3 := E

[5]
add

(
1, 3 ; 0

)
= I5 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



i = 4 : f1,4 = −W1(1, 4)

W1(1, 1)
= −x and V1,4 := E

[5]
add

(
1, 3 ; −x

)
=


1 0 0 −x 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



i = 5 : f1,5 = −W1(1, 5)

W1(1, 1)
= −x2 and V1,4 := E

[5]
add

(
1, 3 ; −x2

)
=


1 0 0 0 −x2
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


As a sidenote, we can calculate the matrix product (V1,2)(V1,3)(V1,4)(V1,5) or any re-ordering of the product

without explicitly identifying each E
[5]
add(1, i ; f1,i) as follows:

(V1,2)(V1,3)(V1,4)(V1,5) =


1 f1,2 f1,3 f1,4 f1,5
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 =


1 0 0 −x −x2
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


Then, the column reduction step in the k = 1 loop produces the following matrix, with the columns highlighted

in orange being the columns affected by the column reduction.

(W1)(V1,2) · · · (V1,5) =


1 0 0 x x2

−x x 0 0 0

0 −x −x2 0 −x3
0 0 x −x 0



1 0 0 −x −x2
0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 =


1 0 0 0 0

−x x 0 x2 x3

0 −x −x2 0 −x3
0 0 x −x 0



Note that the definition of V1 by Line 11 of Algorithm 4.5.1 includes the column permutation in its defi-

nition. Note that since V1,1 = E
[5]
swap(1, 2) is multiplied on the left of (V1,2) · · · (V1,5), it permutes the rows

of (V1,2) · · · (V1,5) instead. Highlighted below are Row 1 and Row 2 of (V1,2) · · · (V1,5) and where they are

mapped to after the row permutation.

V1 = (V1,1)(V1,2)(V1,3)(V1,4)(V1,5) = E
[5]
swap(1, 2)


1 0 0 −x −x2
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 =

abx 0 1 0 0 0
bcx 1 0 0 −x −x2
adx2 0 0 1 0 0
cdx2 0 0 0 1 0
acx3 0 0 0 0 1



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The matrix V1 ∈ GL(5,Q[x]) induces a basis T = (τ1(x), . . . , τ5(x)) of CGr
1 (K•;Q) given as follows:

τ1(x) = (1)(bcx) = (bc)x

τ2(x) = (1)(abx) = (ab)x

τ3(x) = (1)(adx2) = (ad)x2

τ4(x) = (−x)(bcx) + (1)(cdx2) = (−bc+ cd)x2

τ5(x) = (−x2)(bcx) + (acx3) = (−bc+ ac)x3

Observe that the basis T = (τi(x)) is a homogeneous basis.

Step D. On Elimination by Row Reduction: Lines 12-14 of Algorithm 4.5.1

The matrices Uk,k+1, Uk,k+2, . . . , Uk,m ∈ GL(m,F[x]) correspond to row operations that eliminate the entries

under the pivot entry Wk(k, k). As with column reduction, since the elements of Wk are homogeneous by

Lemma 4.4.1 and the pivot Wk(k, k) is chosen to be of minimal degree, each entry Wk(j, k) under the pivot can

be eliminated by the addition of gk,jWk(k, k) with gk,j ∈ F[x] homogeneous and j ∈ {k + 1, . . . ,m}.

As mentioned on Item 4, the column operations in Lines 9-11 of Algorithm 4.5.1 do not affect the kth column

of Wk. Then, the entries below the pivot Wk(k, k), i.e. entries indexed by (j, k) with j ∈ {k + 1, . . . ,m}, are
unaffected by the column reduction. Therefore, we can define the transvections Uk,j that eliminate the (j, k)th

entry of Wk relative to Wk, as opposed to the matrix WkVk post-column reduction. Furthermore, all of the

row operations by the transvection (Uk,j)
−1 := E

[m]
add(j, k ; gk,j) also do not affect the kth row of Wk. Therefore,

we can define the elements gk,j such that Wk(j, k) + gk,j ·Wk(k, k) = 0 relative to Wk, as done in Line 13 of

Algorithm 4.5.1. As a sidenote, the order in which the row operations E
[m]
add(j, k ; gk,j) with j ∈ {k + 1, . . . ,m}

and the column operations E
[n]
add(k, i ; fk,i) with i ∈ {k + 1, . . . , n} do not affect the definition of gk,j and fk,i.

Since we have labeled the matrix Uk ∈ GL(m,F) in Item (1) such that (Uk)
−1Dk−1Vk = Dk, i.e. (Uk)

−1

more closely describes the row operations done on Wk = Uk,kDk−1Vk,k, we will have to take the inverse of the

matrix product (Uk,m)−1(Uk,m−1) · · · (Uk,k)−1 resulting from the row operations done on Dk−1 if we want an

expression for Uk. To simplify this calculation, we can apply the property that (AB)−1 = B−1A−1 for any pair

of invertible matrices A,B ∈ GL(m,F[x]). Then, the matrix reduction on Dk−1 is as follows:

Dk = (Uk,m)−1(Uk,m−1)
−1 · · · (Uk,k+1)

−1 (Uk,k)
−1 (Dk−1) (Vk,k) (Vk,k+1)(Vk,k+2) · · · (Vk,n)

=
(
(Uk,k)(Uk+1) · · · (Uk,m−1)(Uk,m)︸ ︷︷ ︸

Uk

)−1

(Dk−1) (Vk,k)(Vk,k+1)(Vk,k+2) · · · (Vk,n)︸ ︷︷ ︸
Vk

row reduction on Wk︷ ︸︸ ︷ Wk︷ ︸︸ ︷ column reduction on Wk︷ ︸︸ ︷

Observe that if Wk(j, k) = 0, then there is nothing to eliminate and E
[m]
add(j, k ; 0) = Im trivially preserves

homogeneity. If Wk(j, k) ̸= 0, gk,j ∈ F[x] must be homogeneous and satisfy the following equation:

degh
(
gk,j
)
+ degh

(
Wk(k, k)

)
= degh

(
Wk(j, k)

)
Then, Proposition 4.4.7 (row reduction preserves homogeneity) applies and these row operations preserve the

homogeneity of the bases and of the entries. We continue the calculation of the SNF of [∂Gr
1 ] below.

Example 4.5.5. Continue Example 4.5.4. Listed below is the matrix W1, with the pivot entry W1(1, 1)

page 141 of 169



highlighted in blue and the target entries , i.e. the entries below the chosen pivot, in red .

W1 =


1 0 0 x x2

−x x 0 0 0

0 −x −x2 0 −x3
0 0 x −x 0


Below, we define the elementary transvections E

[4]
add(j, i ; f1,i) for j ∈ {2, . . . , 4} used to eliminate the entry

W1(j, 1), with the pivot multiplier g1,j highlighted in orange .

j = 2 : g1,2 = −W1(2, 1)

W1(1, 1)
= x and (U1,2)

−1 := E
[4]
add

(
2, 1 ; x

)
=


1 0 0 0
x 1 0 0
0 0 1 0
0 0 0 1


j = 3 : g1,3 = −W1(3, 1)

W1(1, 1)
= 0 and (U1,3)

−1 := E
[4]
add

(
3, 1 ; 0

)
= I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


j = 4 : g1,4 = −W1(4, 1)

W1(1, 1)
= 0 and (U1,4)

−1 := E
[4]
add

(
4, 1 ; 0

)
= I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Like in the case of (V1,2) · · · (V1,5), the matrix product (U1,4)

−1(U1,3)
−1(U1,2)

−1 = (U1,2U1,3U1,2)
−1 can be

identified explicitly without identifying each matrix U1,j as follows:

(U1,4)
−1(U1,3)

−1(U1,2)
−1 =


1 0 0 0
g1,2 1 0 0
g1,3 0 1 0
g1,4 0 0 1

 =


1 0 0 0
x 1 0 0
0 0 1 0
0 0 0 1


Since the inverses of elementary transvections are known, we can also calculate the product (U1,2)(U1,3)(U1,4),

i.e. the inverse of the matrix calculated above, directly as follows:

(U1,2)(U1,3)(U1,4) =


1 0 0 0
−g1,2 1 0 0
−g1,3 0 1 0
−g1,4 0 0 1

 =


1 0 0 0
−x 1 0 0
0 0 1 0
0 0 0 1


To calculate U1 := (U1,1)(U1,2)(U1,3)(U1,4) with U1,1 = E

[4]
swap(1, 3) from Example 4.5.5, we can permute the

rows of the product (U1,2)(U1,3)(U1,4) as follows:

U1 = (U1,1)(U1,2)(U1,3)(U1,4) = E
[4]
swap(1, 3)


1 0 0 0

−x 1 0 0

0 0 1 0

0 0 0 1

 =

a 0 0 1 0

b −x 1 0 0

cx 1 0 0 0

dx 0 0 0 1




The matrix U1 ∈ GL(4,Q[x]) determines a basis B = (β1(x), . . . , β4(x)) of CGr
0 (K•;Q[x]) by [βj(x)] = colj(U1)

as given below:

β1(x) = (−x)(b) + (1)(cx) = (−b+ c)x

β2(x) = (1)(b) = b

β3(x) = (1)(a) = a

β4(x) = (1)(dx) = (d)x
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We can confirm by direct calculation that the entries to the right and below the pivot W1(1, 1) in the product

(U1)
−1D0V1 =: D1 are zero, highlighted in red below:

(U1)
−1D0V1 =


0 0 1 0
x 1 0 0
1 0 0 0
0 0 0 1




1 0 0 x x2

−x x 0 0 0
0 −x −x2 0 −x3
0 0 x −x 0



0 1 0 0 0
1 0 0 −x −x2
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


=


1 0 0 0 0
0 x 0 x2 x3

0 −x −x2 0 x3

0 0 x −x 0

 =: D1

Final Step. Aggregating the Results: Lines 16-17 of Algorithm 4.5.1

Observe that in the kth iteration, the zero entries found below and to the right of the entries d1, . . . , dk−1 of Dk−1

with di = Dk−1(i, i) remain zero on Dk, i.e. the permutation, column reduction, and row reduction operations

done on Dk−1 leave columns 1, . . . , k − 1 and rows 1, . . . , k − 1 of Dk−1 undisturbed. Then, at each iteration

with k ∈ {1, . . . ,min(m,n)}, the matrix [φ] gets cleared row by row and column by column like so:

D0 := [φ]

∗ ∗ · · · ∗ ∗ · · · ∗
∗ ∗ · · · ∗ ∗ · · · ∗
...

...
. . .

...
...

...

∗ ∗ · · · ∗ ∗ · · · ∗
∗ ∗ · · · ∗ ∗ · · · ∗
...

...
...

...
. . .

...

∗ ∗ · · · ∗ ∗ · · · ∗


⇝

D1 := (U1)
−1D0V1

d1 0 · · · 0 0 · · · 0

0 ∗ · · · ∗ ∗ · · · ∗
...

...
. . .

...
...

...

0 ∗ · · · ∗ ∗ · · · ∗
0 ∗ · · · ∗ ∗ · · · ∗
...

...
...

...
. . .

...

0 ∗ · · · ∗ ∗ · · · ∗


⇝

D2 := (U2)
−1D1V2

d1 0 · · · 0 0 · · · 0

0 d2 · · · 0 0 · · · 0
...

...
. . .

...
...

...

0 0 · · · ∗ ∗ · · · ∗
0 0 · · · ∗ ∗ · · · ∗
...

...
...

...
. . .

...

0 0 · · · ∗ ∗ · · · ∗


⇝ · · ·

· · · ⇝

Dk−1 := (Uk−1)
−1Dk−2Vk−1

d1 0 · · · 0 0 · · · 0

0 d2 · · · 0 0 · · · 0
...

...
. . .

...
...

...

0 0 · · · dk−1 0 · · · 0

0 0 · · · 0 ∗ · · · ∗
...

...
...

...
. . .

...

0 0 · · · 0 ∗ · · · ∗


⇝

Dk := (Uk)
−1Dk−1Vk

d1 0 · · · 0 0 · · · 0

0 d2 · · · 0 0 · · · 0
...

...
. . .

...
...

...

0 0 · · · dk−1 0 · · · 0

0 0 · · · 0 dk · · · ∗
...

...
...

...
. . .

...

0 0 · · · 0 ∗ · · · ∗


⇝

(
Repeat until SNF

is achieved

)

We also get the matrices U ∈ GL(m,F[x]) and V ∈ GL(n,F) by unfolding the matrix reduction as follows:

D := Dmin(m,n)

=
(
Umin(m,n)

)−1
(
Dmin(m,n)−1

) (
Vmin(m,n)

)
...

=
(
Umin(m,n)

)−1 · · · (Uk+1)
−1(Uk)

−1 (Dk−1) (Vk)(Vk+1) · · ·
(
Vmin(m,n)

)
...

=
(
Umin(m,n)

)−1 · · · (Uk)−1 · · · (U2)
−1(U1)

−1 D0 (V1)(V2) · · · (Vk) · · ·
(
Vmin(m,n)

)
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=

(
(U1)(U2) · · · (Uk) · · ·

(
Umin(m,n)

)︸ ︷︷ ︸
U

)
−1 [φ] (V1)(V2) · · · (Vk) · · ·

(
Vmin(m,n)

)︸ ︷︷ ︸
V

Below, we finish the calculation on [∂Gr
1 ] started on Example 4.5.3.

Example 4.5.6. Continue from Example 4.5.5. In this example, we finish the calculation of an SND (U,D, V )

of [∂Gr
1 ] by Algorithm 4.5.1. For reference, [φ] =: D0 ∈ M4,5(Q[x]) is given below.

D0 := [∂Gr
1 ] =

abx bcx adx2 cdx2 acx3

a −x 0 −x2 0 −x3
b x −x 0 0 0

cx 0 1 0 x x2

dx 0 0 x −x 0




From Example 4.5.5, we have calculated the matrices U1 ∈ GL(4,Q[x]), V1 ∈ GL(5,Q[x]), and D1 ∈ M4,5(Q[x])

as labeled in Algorithm 4.5.1. For convenience, we copied the results below.

U1 =


0 0 1 0

−x 1 0 0

1 0 0 0

0 0 0 1

 D1 =


1 0 0 0 0

0 x 0 x2 x3

0 −x −x2 0 x3

0 0 x −x 0

 V1 =


0 1 0 0 0

1 0 0 −x −x2
0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


For the k = 2 loop of Algorithm 4.5.1:

We perform matrix operations on D1. For brevity, we provide the matrices U2 ∈ GL(4,Q[x]) and V2 ∈
GL(5,Q[x]) that account for all row and column operations on D1 respectively. Note that since D1(2, 2) = x

is already of minimal degree across the nonzero entries D1(j, i) with j ∈ {2, . . . , 4} and i ∈ {2, . . . , 5}, D1(2, 2)

can serve as the pivot and we do not need to permute D1. Highlighted in blue is the pivot D1(2, 2) = x ,

in red are the entries to be eliminated by row reduction , and in orange are those to be eliminated by

column operations .

D1 =


1 0 0 0 0

0 x 0 x2 x3

0 −x −x2 0 x3

0 0 x −x 0


We set U2 ∈ GL(4,Q[x]) for the row operations and V2 ∈ GL(5,Q) for the column operations as follows, with

their respective pivot multipliers highlighted in orange and red respectively.

(U2)
−1 =


1 0 0 0

0 1 0 0

0 1 1 0

0 0 0 1

 with U2 =


1 0 0 0

0 1 0 0

0 −1 1 0

0 0 0 1

 and V2 =


1 0 0 0 0

0 1 0 −x −x2
0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


For the k = 3 loop of Algorithm 4.5.1:

Given below is D2 := (U2)
−1D1V2, with the chosen pivot entry D1(4, 3) = x highlighted in blue . Since
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the pivot is not given by the (3, 3)th entry of D2, we need to permute the rows and columns of D2.

D2 := (U2)
−1D1V2 =


1 0 0 0
0 1 0 0
0 1 1 0
0 0 0 1



1 0 0 0 0
0 x 0 x2 x3

0 −x −x2 0 x3

0 0 x −x 0



1 0 0 0 0
0 1 0 −x −x2
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 =


1 0 0 0 0

0 x 0 0 0

0 0 −x2 x2 0

0 0 x −x 0


We have the following calculations for U3 ∈ GL(4,Q[x]) and V3 ∈ GL(5,Q[x]) below. Highlighted in green are

the entries and rows related to row permutations , those in red for column reduction , and those in orange

for row reduction .

W3 := E
[4]
swap(3, 4)D2 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



1 0 0 0 0
0 x 0 0 0
0 0 −x2 x2 0
0 0 x −x 0

 =


1 0 0 0 0
0 x 0 0 0
0 0 x −x 0
0 0 −x2 x2 0



D3 :=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 x 1



1 0 0 0 0
0 x 0 0 0
0 0 x −x 0
0 0 −x2 x2 0



1 0 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

 =


1 0 0 0 0
0 x 0 0 0
0 0 x 0 0
0 0 0 0 0



(U3)
−1 :=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 x 1



1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 x



U3 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

−1


1 0 0 0
0 1 0 0
0 0 1 0
0 0 x 1

−1
=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



1 0 0 0
0 1 0 0
0 0 1 0
0 0 −x 1

 =


1 0 0 0
0 1 0 0
0 0 −x 1
0 0 1 0



V3 :=


1 0 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1



For the k = 4 loop of Algorithm 4.5.1:

Observe that D3 is already in Smith Normal Form. Then, Algorithm 4.5.1 stops and returns the matrices

U and V as denoted below and the matrix D := D3 as the Smith Normal Form of D0 = [∂Gr
1 ].

U = (U1)(U2)(U3) =


0 0 1 0
−x 1 0 0
1 0 0 0
0 0 0 1



1 0 0 0
0 1 0 0
0 −1 1 0
0 0 0 1



1 0 0 0
0 1 0 0
0 0 −x 1
0 0 1 0

 =

a 0 −1 −x 1
b −x 1 0 0
cx 1 0 0 0
dx 0 0 1 0




V = (V1)(V2)(V3) =


0 1 0 0 0
1 0 0 −x −x2
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



1 0 0 0 0
0 1 0 −x −x2
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



1 0 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

 =

abx 0 1 0 −x −x2
bcx 1 0 0 −x −x2
adx2 0 0 1 1 0
cdx2 0 0 0 1 0
acx3 0 0 0 0 1



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We can confirm that U−1[∂Gr
1 ]V = D by the following calculation:

U−1[∂Gr
1 ]V =


0 0 1 0
0 1 x 0
0 0 0 1
1 1 x 0



−x 0 −x2 0 −x3
x −x 0 0 0
0 1 0 x x2

0 0 x −x 0



0 1 0 −x −x2
1 0 0 −x −x2
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

 = · · · =


1 0 0 0 0
0 x 0 0 0
0 0 x 0 0
0 0 0 0 0

 = D

Then, the matrices U ∈ GL(4,Q[x]) and V ∈ GL(5,Q[x]) induce bases B = (β1(x), . . . , β4(x)) of CGr
0 (K•;Q) by

[βj ] = colj(U) and T = (τ1(x), . . . , τ5(x)) of CGr
1 (K•;Q) by [τi] = coli(V ) as follows:

β1(x) = (−x)(b) + (1)(cx) = (−b+ c)x

β2(x) = (−1)(a) + (1)(b) = (−a+ b)

β3(x) = (−x)(a) + (1)(dx) = (−a+ d)x

β4(x) = (1)(a) = (a)

τ1(x) = (1)(bcx) = (bc)x

τ2(x) = (1)(abx) = (ab)x

τ3(x) = (1)(adx2) = (ad)x2

τ4(x) = (−x)(abx) + (−x)(bcx) + (1)(adx2) + (1)(cdx2) = (−ab+ bc+ ad+ cd)x2

τ5(x) = (−x2)(abx) + (−x2)(bcx) + (1)(acx3) = (−ab+ bc+ ac)x3

Observe that both B and T are homogeneous bases and that the nonzero elements 1, x, x ∈ Q[x] of the SNF D

are also homogeneous.

With Algorithm 4.5.1 established, we can now state the existence claim for the Graded Structure Theorem

(Theorem 4.3.1) in relation to the SNDs compatible with Proposition 4.3.5.

Proposition 4.5.7. Let M be a finitely generated graded F[x]-module with graded presentation given by φ :

FS → FG and π : FG → M with homogeneous bases S = (σ1(x), . . . , σn(x)) of FS and A = (α1(x), . . . , αm(x))

of FG.

Then, there exists an SND (U,D, V ) of [φ]A,S such that the basis B = (β1(x), . . . , βm(x)) of FG by [βj(x)] =

colj(U) is a homogeneous basis and the nonzero elements d1(x), . . . , dr(x) of the SNF D by dj(x) = D(j, j) are

also homogeneous. Furthermore, the basis B = {βj(x)}mj=1 of FG and the nonzero elements {dj(x)}rj=1 satisfy

the hypothesis of Proposition 4.3.5 and can be used to calculate the graded invariant factor decomposition of

M .

Proof. Since [φ]A,S satisfies Lemma 4.4.1, Algorithm 4.5.1 will yield an SND (U,D, V ) with the required

properties. Note that Proposition 4.4.4 states that the properties given by Lemma 4.4.1 are preserved

in the column reduction operations done by Algorithm 4.5.1, Proposition 4.4.7 states this for row

reduction, and Proposition 4.4.9 states this for the permutations and dilations.

The divisibility relation d1(x)
∣∣ · · · ∣∣ dr(x) is guaranteed by how the pivots in each iteration in

Algorithm 4.5.1 are chosen, i.e. degh(d1(x)) ≤ degh(d2(x)) ≤ · · · degh(dr(x)) since each dr(x) is chosen
to be of minimal degree. Note that while dj(x) is generally not in the form xtj with degh(dj(x)) = tj
as required by Proposition 4.3.5, there exists a nonzero µj ∈ F such that µ · dj(x) = xtj . Then, the

SNF D of [φ] can be multiplied by appropriate elementary dilations over F[x] to have dj(x) = xtj for

all j ∈ {1, . . . , r}. ■

While we have not strictly established this for arbitrary graded chain complexes of free graded F[x]-modules,

we can continue the calculation on [∂Gr
1 ] on Example 4.5.6 and determine the 0th persistent homology module
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of the filtration K•.

Example 4.5.8. Let K• and K be given as in Example 3.2.3 and orient K with the vertex order Vert(K) =

(a, b, c, d). For convenience, an illustration of K and K• (without orientation) is copied below:

We claim that the following sequence is a graded presentation of the 0th graded persistent homology module

HGr
0 (K•;Q) of K• with coefficients in Q:

CGr
1 (K•;Q)

∂Gr
1−−−−−−→ CGr

0 (K•;Q)
π

−−−−−→ HGr
0 (K•;Q) −−−−→ 0

where π refers to the canonical quotient map. The justification for this is similar to the non-graded case by

Proposition 4.2.1 with ker(∂Gr
0 ) = CGr

0 (K•;Q).

An SND (U,D, V ) of [∂Gr
1 ] in the graded presentation ofHGr

0 (K•;Q), as calculated in Example 4.5.6, is given

below. The columns of U and the diagonal entries of D highlighted in blue correspond to a basis of im(φ) ,

and the columns of U highlighted in red correspond to the basis elements that map to the free component

of HGr
0 (K•;Q).

U =

a 0 −1 −x 1
b −x 1 0 0
cx 1 0 0 0
dx 0 0 1 0


 D =


1 0 0 0 0
0 x 0 0 0
0 0 x 0 0
0 0 0 0 0

 V =

abx 0 1 0 −x −x2
bcx 1 0 0 −x −x2
adx2 0 0 1 1 0
cdx2 0 0 0 1 0
acx3 0 0 0 0 1




Then, HGr
0 (K•;Q) is calculated using Proposition 4.3.5 as follows, with the trivial and torsion summands

highlighted in blue and the free summands in red .

(trivial) (torsion) (torsion) (free)

HGr
0 (K•;Q)

GrMod∼=
Q[x]⟨(−b+ c)x⟩

Q[x]⟨(1)(−b+ c)x⟩
⊕ Q[x]⟨−a+ b⟩

Q[x]⟨(x)(−a+ b)⟩
⊕ Q[x]⟨(−a+ d)x⟩

Q[x]⟨(x)(−a+ d)x⟩
⊕ Q[x]⟨a⟩

GrMod∼= (0) ⊕
(

Q[x]⟨−a+ b⟩
Q[x]⟨(x)(−a+ b)⟩

)
⊕ Σ1

(
Q[x]⟨−a+ d⟩

Q[x]⟨(x)(−a+ d)⟩

)
⊕ Q[x]⟨a⟩

GrMod∼=
Q[x]

(x)
⊕ Σ1

(
Q[x]

(x)

)
⊕ Q[x]

We can also determine the 0th persistence barcode Bar(K•;Q) of the filtration K• by calculating the interval

decomposition of the 0th persistent homology module H0(K•;Q) by Corollary 2.5.13 as follows:

(torsion) (torsion) (free)

HGr
0 (K•;Q)

GrMod∼=
Q[x]

(x)
⊕ Σ1

(
Q[x]

(x)

)
⊕ Q[x] as graded Q[x]-modules

H0(K•;Q)
Pers∼= I[0,1)• ⊕ I[1,2)• ⊕ I[0,∞)

• as persistence modules over Q

Bar(K•;Q) ∋ [0, 1) , [1, 2) , [0,∞) as intervals in a persistence barcode
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Section 4.6. Matrix Calculation of Homology of Graded Chain Complexes

Let C∗ = (Cn, ∂n)n∈Z be a chain complex of free graded F[x]-modules Cn of finite rank with graded differentials

∂n : Cn−1 → Cn. As with the case of chain complexes of free R-modules in Section 4.2, we can calculate the nth

homology of C∗ using SNDs of [∂n+1]. Recall that this calculation relies on the existence of a decomposition of

Cn by Theorem 4.2.3 into three direct summands as denoted below:

Cn
Mod∼= Ktor

n ⊕Kfree
n ⊕ (Cn

/
ker ∂n)

We discussed that this decomposition can be represented by a specific SND (Un+1, Dn+1, Vn+1) of [∂n+1] and

we have also established that this SND can be calculated using an arbitrary SND (Wn+1, Dn+1, Vn+1) of [∂n+1].

Then, using the same arguments for Smith Normal Decompositions of matrices over F[x] given by Lemma 4.4.1

in Section 4.3, we claim that the results of Section 4.2 also extend to the graded case. That is, we have the

following decomposition on Cn as a graded F[x]-module:

Cn
GrMod∼= Ktor

n ⊕Kfree
n ⊕ (Cn

/
ker ∂n)

with graded F[x]-modules Ktor
n , Kfree

n , and Cn /ker ∂n defined similarly as in Theorem 4.2.3.

In Section 3.3, we discussed how the persistent homology of filtrations can be expressed as the homology of

graded chain complexes. That is, given a filtration K•, we can determine the nth persistent homology module

Hn(K•;F) of K• with coefficients in F by the calculating the nth simplicial persistent homology module:

HGr
n (K•;F) ∼=GrMod

ker(∂Gr
n )

im(∂Gr
n+1)

where, for all n ∈ Z, the filtered nth chain module CGr
n (K•;F) of K• is a graded F[x]-module and graded nth

boundary map ∂Gr
n : CGr

n (K•;F) → CGr
n−1(K•;F) is a graded homomorphism. Then, HGr

n (K•;F) admits the

following graded presentation:

CGr
n+1(K•;F)

∂Gr
n+1−−−−→ ker(∂Gr

n )
π
−−→ HGr

n (K•;F) −→ 0

Since the arguments for the calculation of graded chain complexes follow exactly as that of Section 4.2 (with the

addition of the modifier graded for R = F[x]), we only present examples and some comments about calculation

in this section.

Earlier in Example 4.5.8, we calculated the 0th persistent homology module H0(K•;Q) of some filtration

K• where ker(∂Gr
0 ) = CGr

0 (K•;Q). In the example below, we calculate the 1st persistent homology module

H1(K•;Q) of the same filtration.

Example 4.6.1. Let K be the simplicial complex given below with orientation Vert(K) = (a, b, c, d). Let K•
be a filtration on K with Kt given as follows:

To calculate H1(K•;Q), we consider the matrices of the graded boundary maps ∂Gr
2 : CGr

2 (K•;Q) and ∂Gr
1 :

CGr
1 (K•;Q), which determine the torsion and free component of HGr

1 (K•;Q) respectively. Provided below are
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[∂Gr
1 ] and [∂Gr

2 ] relative to the standard bases.

[∂Gr
1 ] =

abx bcx adx2 cdx2 acx3

a −x 0 −x2 0 −x3
b x −x 0 0 0

cx 0 1 0 −x x2

dx 0 0 x x 0


 and [∂Gr

2 ] =

abcx4 acdx5

abx x3 0

bcx x3 0

adx2 0 −x3
cdx2 0 x3

acx3 −x x2




We want to find an SNDs (U1, D1, V1) and (U2, D2, V2) of [∂Gr

1 ] and [∂Gr
2 ] respectively such that a basis compatible

with the following decomposition of CGr
1 (K•;Q) can be identified from said SNDs:

CGr
1 (K•;Q)

GrMod∼= Ktor
1 ⊕Kfree

1 ⊕ CGr
1 (K•;Q)

ker(∂Gr
1 )

with Ktor
1 and Kfree

1 as denoted in Theorem 4.2.3. Recall that

ker(∂Gr
1 ) ∼= Ktor

1 ⊕Kfree
1 and T

(
HGr

1 (K•;Q)
)
∼= Ktor

1

/
im
(
∂Gr
2

)
where T(−) denotes the torsion submodule of a graded F[x]-module. Note that if we want to identify cycle

representatives, the basis we get for Ktor
1 from the SND of [∂Gr

2 ] must be identifiable in the basis for ker(∂Gr
1 ) we

get from the SND of [∂Gr
1 ]. To get SNDs with this property, we do matrix reduction differently than described

by Algorithm 4.5.1.

For the SND (U2, D2, V2) of [∂Gr
2 ]: Define T0 := [∂Gr

2 ] and let Tk denote matrix [∂Gr
2 ] after k column or row

elimination operations. We use the following color scheme in the calculation below:

chosen pivot , entry to be eliminated , pivot multiplier , affected row or column

T1 := T0 · E[2]
add(1, 2 ;x) =


x3 0
x3 0
0 −x3
0 x3

−x x2


(

1 x
0 1

)
=


x3 x4

x3 x4

0 −x3
0 x3

−x 0



T2 := E
[5]
add

(
2, 5 ;x2

)
· T1 =


1 0 0 0 0
0 1 0 0 x2

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




x3 x4

x3 x4

0 −x3
0 x3

−x 0

 =


x3 x4

0 x4

0 −x3
0 x3

−x 0



T3 := E
[5]
add

(
1, 5 ;x2

)
· T2 =


1 0 0 0 x2

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




x3 x4

0 x4

0 −x3
0 x3

−x 0

 =


0 x4

0 x4

0 −x3
0 x3

−x 0



T4 := E
[5]
add(3, 4 ; 1) · T3 =


1 0 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1




0 x4

0 x4

0 −x3
0 x3

−x 0

 =


0 x4

0 x4

0 0
0 x3

−x 0


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T5 := E
[5]
add(2, 4 ;−x) · T4 =


1 0 0 0 0
0 1 0 −x 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




0 x4

0 x4

0 0
0 x3

−x 0

 =


0 x4

0 0
0 0
0 x3

−x 0



T6 := E
[5]
add(1, 4 ;−x) · T5 =


1 0 0 −x 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




0 x4

0 0
0 0
0 x3

−x 0

 =


0 0
0 0
0 0
0 x3

−x 0


Observe that the matrix T6 is only a few elementary permutations away from being in Smith Normal Form.

Instead of doing row and column permutations on T6, we stop here and work with the SND (U2, D2, V2) of [∂Gr
2 ]

as given below, with the columns of U2 corresponding to a basis of Ktor
1 and the entries in D2 corresponding to

the invariant factors of HGr
1 (K•;Q) highlighted in red and purple .

V2 = E
[2]
add(1, 2 ;x) =

(
1 x

0 1

)
, and D2 = T6 =


0 0

0 0

0 0

0 x3

−x 0

,

U2 =

(
E
[5]
add(1, 4 ;−x) · E

[5]
add(2, 4 ;−x) · E

[5]
add(3, 4 ; 1) · E

[5]
add

(
1, 5 ;x2

)
· E[5]

add

(
2, 5 ;x2

))−1
= E

[5]
add

(
2, 5 ;−x2

)
· E[5]

add

(
1, 5 ;−x2

)
· E[5]

add(3, 4 ;−1) · E
[5]
add(2, 4 ;x) · E

[5]
add(1, 4 ;x)

=

abx 1 0 0 x −x2
bcx 0 1 0 x −x2
adx2 0 0 1 −1 0

cdx2 0 0 0 1 0

acx3 0 0 0 0 1




︸ ︷︷ ︸
Ktor

1

Let β1x
s1 , β2x

s2 ∈ CGr
n (K•;Q) be given by [β1x

s1 ] = col4(U2) and [β2x
s2 ] = col5(U2) , following the color

scheme above. Then, we have the following information for the graded invariant factor decomposition of Ktor
1 /

im(∂Gr
2 ):

Filtered Cycle Cycle in C1(K;Q) Degree of Invariant Factor Grading Shift

β1x
s1 = (ab+ bc− ad+ cd)x2 β1 = ab+ bc− ad+ cd t1 = degh(x

3) = 3 s1 = 2

β2x
s2 = (−ab− bc+ ac)x3 β2 = −ab− bc+ ac t1 = degh(−x) = 1 s2 = 3

Then, the torsion component T(HGr
1 (K•;Q)) of HGr

1 (K•;Q) is given by:

T
(
HGr

1 (K•;Q)
) GrMod∼=

Ktor
1

im(∂Gr
2 )
∼=

Q[x]
〈
β1x

2
〉

Q[x]⟨x3 · β1x2⟩
⊕

Q[x]
〈
β2x

3
〉

Q[x]⟨x · β2x3⟩
∼= Σ2

(
Q[x]

(x3)

)
⊕ Σ3

(
Q[x]

(x)

)

To determine the free component F(HGr
1 (K•;Q)) ∼= Kfree

1 of HGr
1 (K•;Q), we need information about

ker(∂Gr
1 ) = Kfree

1 ⊕ Ktor
1 , which we can get from an SND of [∂Gr

1 ]. Given below is the SND (U1, D1, V1) of
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[∂Gr
1 ] calculated in Example 4.4.5 (column reduction) and Example 4.4.8 (row reduction):

U1 =


1 1 x x

0 1 x 0

0 0 1 0

0 0 0 1

 D1 =


0 0 0 0 0

x 0 0 0 0

0 1 0 0 0

0 0 x 0 0

 V1 =

abx 1 0 0 x −x2
bcx 0 1 0 x −x2
adx2 0 0 1 −1 0

cdx2 0 0 0 1 0

acx3 0 0 0 0 1




︸ ︷︷ ︸
ker(∂Gr

1 )

Since the 4th and 5th columns of the SNFD1 of [∂Gr
1 ] are zero columns , the 4th and 5th columns of V1 determine a

basis of ker(∂Gr
1 ). Observe that these two columns are exactly the columns corresponding to β1x

s1 and β2x
s2 .

Then, Kfree
1 = 0 and the free component of HGr

1 (K•,Q) is also trivial. Therefore,

HGr
1 (K•;Q)

GrMod∼= F
(
HGr

1 (K•;Q)
)
⊕ T

(
HGr

1 (K•;Q)
)
∼= 0⊕ Σ2

(
Q[x]

(x3)

)
⊕ Σ3

(
Q[x]

(x)

)
By application of ΓPers(−) on the graded invariant factor decomposition of HGr

1 (K•;Q), we get the following for

the interval decomposition and persistence barcode Bar1(K•;Q) of H1(K•;Q):

H1(K•;Q)
Pers∼= ΓPers

(
Σ2

(
Q[x]

(x3)

)
⊕ Σ3

(
Q[x]

(x)

))
∼= I[2,2+3)

• ⊕ I[3,3+1)
•

and

Bar1(K•;Q) =
{
[2, 5), [3, 4)

}
The intervals in the 1st persistent barcode Bar1(K•;Q) of K• over Q correspond to the 1st filtered homology

classes illustrated below:

Interval Module Illustrated in K•

I[2,2+3)
• ∼= ΓPers

(
Q[x]

〈
β1x

2
〉

Q[x]⟨x3 · β1x2⟩

)
with β1 = ab+ bc− ad+ cd

I[3,3+1)
• ∼= ΓPers

(
Q[x]

〈
β2x

3
〉

Q[x]⟨x · β2x3⟩

)
with β2 = −ab− bc+ ac
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Appendix A1. List of Symbols

Symbols involving Sets, Modules, and Graded Modules.

N0 the nonnegative integers, i.e.

N0 = {n ∈ Z : n ≥ 0} = {0, 1, 2, . . .}.

R unless otherwise specified, typically used

to refer to an arbitrary principal ideal

domain (PID).

R× the group of units (invertible elements) of

some ring R.

F typically used to refer to an arbitrary field.

F(M) the free component of an R-module M .

T(M) the torsion component of an R-module M .

M
N usu. the quotient module with some

R-module M and submodule N of M ;

equiv. to M/N .

R⟨−⟩ refers to the free R-module formed by

R-formal sums of elements in the

argument, see Definition A3.7.

R[x] the polynomial ring with indeterminate x,

equipped with the standard grading when

grading is considered, see Definition 2.4.2.

Mxt the R-module isomorphic to M by

mxt 7→ m ∈M ; may be used to identify

the degree of a homogeneous component of

a graded R[x]-module, see Remark 2.4.9.

deg(−) the degree of a polynomial with

indeterminate x, not necessarily as an

element of a graded F[x]-module.

degh(−) the degree of a homogeneous element of a

graded F[x]-module, usually used when a

relation is only valid for homogeneous

elements, agrees with deg(−) for nonzero
homogeneous elements and is undefined

for non-homogeneous elements and zero.

idA usu. the identity function on some set A.

Symbols for Relevant Categories.

C usu. used to refer to an arbitrary category.

Top the category of topological spaces and

continuous maps.

Poset(R,≤) the category induced by a poset (R,≤),
see Definition A4.3, conventionally

denoted as (R,≤) in category theory;

not to be confused with the category

Poset of posets and order-preserving maps

(not used in this paper).

A-Simp the category of (abstract) simplicial

complexes and simplicial maps, see

Definition 1.3.2.

A usu. for an arbitrary abelian category.

AbGrp the category of abelian groups and group

homomorphisms.

ModR the category of right R-modules and

R-module homomorphisms for some ring

R, the modifier “right” is usu. dropped

when R is commutative.

ModZ category of Z-modules, equiv. to AbGrp.

ModR[x] the category of ungraded R[x]-modules,

i.e. disregarding any graded structure (if

such exists).

GrModR[x] the category of graded modules over

R[x] and graded R[x]-module

homomorphisms, see Theorem 2.4.6.

PersF the category of persistence modules over F
and persistence morphisms, see Definition

2.2.1.

Ch-A the category of chain complexes of an

abelian category A and chain maps; in this

paper, ∗ is used for the index n ∈ Z, e.g.
C∗ = (Cn, ∂n)n∈Z is a chain complex.

Ch-GrModF[x] the category of graded chain

complexes, see Definition 2.4.17.

Ch-PersF the category of persistence complexes, see

Definition 2.2.10.

Hn(−) the nth chain homology functor Ch-A→ A

in some abelian category A.

For A = GrModF[x], see Definition 2.4.17.

For A = PersF, see Definition 2.2.10(iii).

idC the identity functor on a category C.
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Symbols and Shorthands for Specific Binary Relations.

⊕ refers to the direct sum operation on an

abelian category A; when the category A

is ambiguous or emphasized, an

accompanying relation ∼=A is identified in

the relevant line.

For A = ModF[x] or A = GrModF[x], see

Remark 2.4.7. For A = PersF, see

Definition 2.2.5.

∼=C denotes an isomorphism relation on a

category C, usu. used when the category

in which the relation is considered is

ambiguous or emphasized.

Ab
= denotes an equality at the level of abelian

groups or F[x]-vector spaces, see Remark

2.4.7.
Mod∼= shorthand for an isomorphism relation in

ModR[x], disregarding any graded

structure (if such exists), see Remark

2.4.7.
GrMod∼= shorthand for an isomorphism relation in

GrModF[x], see Remark 2.4.7.
Pers∼= shorthand for an isomorphism relation in

PersF, see remark under Definition 2.2.3.

Notation involving Simplicial Complexes and Simplicial Homology. See Chapter 1.

K unless otherwise specified, usually used to

refer to an arbitrary simplicial complex.

Vert(K) the vertex set of a simplicial complex K,

see Definition 1.1.1.

Kn the standard ordered basis of Cn(K;R) of

a simplicial complex K relative to some

given orientation on Vert(K), see

Definition 1.2.5.

Cn(K;R) the nth simplicial chain group of a

simplicial complex K, see Definition 1.2.1.

Cn(K) shorthand for Cn(K;Z).

Cn(−;R) the nth simplicial chain group functor

A-Simp→ModR with coefficients in R,

see Definition 1.3.5.

fn,# usu. the map Cn(K;R)→ Cn(L;R) on

the nth simplicial chain groups induced by

the simplicial map f : K → L, see

Definition 1.3.3.

f# shorthand for fn,#, used when the

dimension n is arbitrary or unambiguous.

[v0, . . . , vn] an oriented n-simplex, i.e. a basis

element of an nth chain group Cn(K;R)

with ordering (v0, . . . , vn), see Definition

1.2.5.

v0 · · · vn string shorthand for the oriented

n-simplex [v0, . . . , vn], see Remark 1.2.2.

∂n usu. refers to a simplicial boundary map

∂n : Cn(K;R)→ Cn−1(K;R), see

Definition 1.2.7; also used to denote

differentials of an arbitrary chain complex

C∗ = (Cn, ∂n)n∈Z.

C∗(K;R) the simplicial chain complex

C∗(K;R) = (Cn(K;R), ∂n)n∈Z with

boundary maps ∂n : Cn(K;R)→
Cn−1(K;R), see Definition 1.2.9.

C∗(K) shorthand for C∗(K;Z).

C∗(−;R) the simplicial chain complex functor

A-Simp→ Ch-ModR, see Definition 1.3.7.

Hn(K;R) the nth simplicial homology group of a

simplicial complex K with coeff. in R, see

Definition 1.2.9.

Hn(K) shorthand for Hn(K;Z).

Hn(−;R) usu. refers to the nth simplicial homology

functor A-Simp→ModR with coeff. in R,

see Definition 1.3.9.

βn(K;R) the nth Betti number of a simplicial

complex K with coefficients in a PID R,

i.e. βn(K;R) = rank(Hn(K;R)).

βn(K) shorthand for βn(K;Z).

[σ] usu. refers to a homology class in

Hn(K;R) with the n-chain σ an R-formal

sum of oriented n-simplices, typically

written in string notation.
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Notation involving Persistence Modules. See Chapter 2.

(V•, α•) a persistence module with vector spaces Vt
and structure maps αs,t : Vt → Vs, see

Definition 2.1.1.

V• shorthand for (V•, α•), see Definition 2.1.1.

φ• usu. a persistence morphism φ• : V• →W•
with φ• = (φt)t∈N0

, see Definition 2.2.1(ii).

(V •
∗ , α

•
∗, ∂

•
∗ ) a persistence complex, i.e. a chain

complex of persistence modules (V •
n , α

•
n)

with differentials ∂•
n : V •

n → V •
n−1 over

n ∈ Z; see Definition 2.2.10.

(V •
∗ , ∂

•
∗ ) shorthand for (V •

∗ , α
•
∗ , ∂

•
∗ ).

IJ• a J-interval (persistence) module with

J ⊆ N0 an interval, see Definition 2.3.1.

Bar(V•) the persistence barcode of a persistence

module V•, see Definition 2.3.6.

ΓGrMod the functor PersF → GrModF[x] in the

isomorphism of categories bet. PersF and

GrModF[x], see Definition 2.5.1.

ΓPers the functor GrModF[x] → PersF in the

isomorphism of categories bet. PersF and

GrModF[x], see Definition 2.5.6.

Notation involving Filtrations and Persistent Homology. See Chapter 3.

K• a filtration K• : Poset(N0,≤)→ A-Simp

of a simplicial complex K, see Definition

3.1.1.

Cn(K•;F) the nth filtered chain module of a

filtration K• with coefficients in F, see
Definition 3.3.1.

CGr
n (K•;F) the nth graded chain module of a

filtration K• with coefficients in F, see
Definition 3.3.4.

KGr
n the standard ordered basis of CGr

n (K•;F)
induced by the orientation on K, see

Definition 3.3.9.

∂•
n the nth filtered boundary morphism

∂•
n : Cn(K•;F)→ Cn−1(K•), see

Definition 3.3.12.

∂Gr
n the nth graded boundary map

∂Gr
n : CGr

n (K•;F)→ CGr
n−1(K•;F), see

Definition 3.3.13.

C∗(K•;F) the simplicial persistence complex of K•
with C∗(K•;F) = (Cn(K•;F), ∂•

n)n∈Z, see

Definition 3.3.17.

CGr
∗ (K•;F) the simp. graded chain complex of K•

with CGr
∗ (K•;F) = (CGr

n (K•;F), ∂Gr
n )n∈Z,

see Definition 3.3.17

Hn(K•;F) the nth persistent homology module of

K• with coeff. in F, see Definition 3.2.1.

HGr
n (K•;F) the nth graded homology module of a

filtration K•, see Definition 3.3.19.

[−]t a homology class in a persistent homology

module at scale t ∈ N0, see Defn. 3.2.1.

Barn(K•;F) the nth persistence barcode of a

filtration K• with coefficients in F, see
Defn. 3.2.1.

Hn(Kt; p;F) the p-persistent nth homology group

with coefficients in F, see Defn. 3.2.12.

βn(Kt; p;F) the p-persistent nth Betti number with

coefficients in F, see Defn. 3.2.12.

Notation involving Matrices and Smith Normal Decompositions (SNDs). See Appendix A2.

[v]S the coordinate matrix of v ∈M relative to

a basis S of some free R-module M , see

Definition A3.8.

[φ]A,S the matrix of a module homomorphism

φ :M → N relative to bases S and A of

R-modules M and N respectively.

(U,D, V ) usu. refers to an SND of some matrix A

such that U−1AV = D, see Defn. 4.1.8.

In the identity matrix in GL(n,R).

E
[n]
swap(−) an elementary permutation of degree n

over some ring R, see Definition A2.5.

E
[n]
dilate(−) an elementary dilation of degree n over

some ring R, see Definition A2.5.

E
[n]
add(−) an elementary transvection of degree n

over some ring R, see Definition A2.5.
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Appendix A2. Matrices over Euclidean Domains

In this paper, we discuss algorithms over matrices over some Euclidean domain R, i.e. matrices whose entries are

elements of R. Note that Euclidean domains have multiplicative identities, typically denoted by 1 or 1R, which

are unique. Euclidean domains are also commutative rings, i.e. the multiplication operation is commutative.

Note that most definitions involving matrices over R are generally the same as that over R. For example,

since R has identity 1, identity matrices and invertible matrices are defined in the same way as that of GL(n,R).
Below, we identify notation involving families of matrices used in this paper.

Definition A2.1. Let R be a Euclidean domain. Let Mm,n(R) refer to the collection of all (m×n)-matrices,

i.e. having m rows and n columns, over R. If m = n, we write Mn(R) to refer to Mn,n(R). Let GL(n,R) refer

to the general linear group of degree n over R, i.e. the collection of all invertible (n×n)-matrices over R.

Next, we identify notation for certain components of some given matrix.

Definition A2.2. Let A ∈Mm,n(R). Let A(j, i) denote the entry of A at the jth row and ith column.

If n = 1, we call A ∈Mm,1(R) a column vector and write A(j) := A(j, 1) for the jth entry of A. If m = 1, we

call A ∈M1,n(R) a row vector and write A(i) := A(1, i) for the ith entry of A.

Let coli(A) ∈ Mm,1(R) refer to the column vector corresponding to the ith column of A ∈ Mm,n(R), i.e. for

all j ∈ {1, . . . ,m}, coli(A)(j) = A(j, i) for fixed i. Let rowj(A) ∈M1,n(R) refer to the row vector corresponding

to the jth row of A ∈Mm,n(R), i.e. for all i ∈ {1, . . . , n}, rowj(A)(i) = A(j, i) for fixed j.

Note that indices of the rows and columns of matrices always start at 1. We emphasize this since, for some

objects referenced in this paper, e.g. persistence modules, the indexing starts at 0. In this paper, we make an

effort to use j and i to refer to an index of some row and column respectively but this is sometimes not possible,

e.g. in cases where i or j have been defined beforehand.

We also talk about diagonal matrices in this paper. For brevity, we identify notation for describing diagonal

matrices by the elements on their diagonal.

Definition A2.3. Let D = diag(d1, d2, . . . , dn) with di ∈ R for all i ∈ {1, . . . , n} refer to matrix D ∈ Mn(R)

given by D(i, j) = di if i = j and D(i, j) = 0 otherwise.

We also talk about block matrices in this paper. We identify the notation used for these below.

Definition A2.4. Let A ∈Mm1,n1(R), B ∈Mm1,n2(R), C ∈Mm2,n1(R), D ∈Mm2,n2(R). We write

X =

(
A B

C D

)
to describe the matrix X ∈ Mm,n(R) with m = m1 +m2 and n = n1 + n2. We call X a block matrix and

the matrices A,B,C,D the blocks of X. When a block is given by a zero matrix, we usually do not write the

dimensions of the zero matrix and assume its dimensions are appropriately defined.

Listed below are three families of matrices that are generalizations of the elementary matrices over R, i.e.
those used in matrix reduction and are usually called Type (I), Type (II), and Type (III) matrices. Below, we

state a definition for these families of matrices, taken from [AW92, Definition 4.1.8]. Note that interpretation
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of the left or right multiplication of these matrices are given later in Proposition A2.7 (row operations) and

Proposition A2.8 (column operations).

Definition A2.5. The elementary matrices over R of degree n consists of elementary permutations, ele-

mentary dilations, and elementary transvections, defined below. Note that all indices are elements of {1, . . . , n}.

i. An elementary permutation E
[n]
swap(k1, k2) ∈ GL(n,R) on two indices k1, k2 ∈ {1, . . . , n} is the matrix

obtained by interchanging rows k1 and row k2 (or equivalently, columns k1 and k2) of the identity matrix

In, i.e.

rowj

(
E
[n]
swap(k1, k2)

)
=


rowk2(In) if j = k1

rowk1(In) if j = k2

rowj(In) otherwise

or coli

(
E
[n]
swap(k1, k2)

)
=


colk2(In) if i = k1

colk1(In) if i = k2

coli(In) otherwise

Elementary permutations are involutions, i.e. the inverse of E
[n]
swap(k1, k2) is E

[n]
swap(k1, k2).

ii. An elementary transvection E
[n]
add(kj , ki ;α) ∈ GL(n,R) by α ∈ R on the (kj , ki)

th entry with

kj , ki ∈ {1, . . . , n} and kj ̸= ki is the matrix obtained by taking the identity matrix and replacing the

(kj , ki)
th entry with α, i.e.

E
[n]
add(kj , ki ;α)(j, i) =

{
α if j = kj and i = ki

In(j, i) otherwise

We may call α the transvection multiplier of E
[n]
add(kj , ki ;α). The inverse of an elementary transvec-

tion E
[n]
add(kj , ki;α) is the transvection E

[n]
add(kj , ki,−α) where −α is the additive inverse of α in R.

iii. An elementary dilation E
[n]
dilate(k, µ) ∈ GL(n,R) on index k ∈ {1, . . . , n} by a unit µ ∈ R× is the

matrix obtained by replacing the kth diagonal element of In with µ, i.e.

E
[n]
dilate(k, µ)(j, i) =

{
µ if j = k and i = k

In(j, i) otherwise

We sometimes call µ the dilation multiplier of E
[n]
dilate(k, µ). The inverse of an elementary dilation

E
[n]
dilate(k, µ) is the dilation E

[n]
dilate

(
k, µ−1

)
with µ−1 the multiplicative inverse of µ in R.

One reason why elementary matrices are considered significant is due to the following result for matrices

over Euclidean domains, stated below.

Proposition A2.6. Any invertible matrix over a Euclidean domain R can be expressed as a finite product of

elementary matrices. That is, GL(n,R) is generated by the elementary matrices over R of degree n.

Remark. For a proof, see under [AW92, Theorem 5.2.10]. As a sidenote,

Observe that, given two Euclidean domains R1 and R2, the family of elementary permutations on R1

and R2 are defined very similarly since only the multiplicative identities are used to generate them and these

identities are unique for each ring. For example, the elementary permutations of matrices over Z are exactly

the elementary permutations of matrices of R since they share identity elements.

We provide a visual description of these elementary permutations below. Observe that the order of the

arguments k1 and k2 in E
[n]
swap(k1, k2) does not matter, i.e. E

[n]
swap(k1, k2) = E

[n]
swap(k2, k1).
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E
[n]
swap

(
k1 , k2

)
=

i=1 ··· k1 ··· k2 ··· n ◁ column indices

j=1 1 · · · 0 · · · 0 · · · 0
...

...
. . .

...
...

...

k1 0 0 1 0
...

...
...

. . .
...

...

k2 0 1 0 0
...

...
...

...
. . .

...

n 0 · · · 0 · · · 0 · · · 1
△

row indices





Color Scheme:

indices k1 and k2

entries in In set to 1

entries in In set to 0

with uncolored entries
agreeing with In

Elementary transvections are relatively straightforward to work with since they allow any ring element to be

the transvection multiplier. Note that if α = 0 is the additive identity ofR, then E
[n]
add(kj , ki ;α) = In ∈ GL(n,R).

Also, note that the order of arguments in the notation E
[n]
add(kj , ki ;α) is important, unlike for elementary

permutations, i.e. E
[n]
add(kj , ki ;α) ̸= E

[n]
add(ki, kj ;α).

Provided below is a visual description of E
[n]
add(krow, kcol ;α). As the labels suggest, the first two arguments

krow, kcol determine that the (krow, kcol)
th entry of E

[n]
add(krow, kcol ;α) is multiplier α.

E
[n]
add

(
krow , kcol ; α

)
=

i=1 ··· krow ··· kcol ··· n ◁ column indices

j=1 1 · · · 0 · · · 0 · · · 0
...

...
. . .

...
...

...

krow 0 1 α 0
...

...
...

. . .
...

...

kcol 0 0 1 0
...

...
...

...
. . .

...

n 0 · · · 0 · · · 0 · · · 1
△

row indices





Color Scheme:

row index krow

column index kcolumn

transvection multiplier α

with uncolored entries
agreeing with In

An elementary transvection E
[n]
add(krow, kcol ;α) can also be described row-wise as follows. Note that only

row krow of E
[n]
add(krow, kcol ;α) differs from the identity matrix In.

rowj

(
E
[n]
add(krow, kcol ;α)

)
=

{
rowj (In) + α · rowkcol (In) if j = krow

rowj(In) otherwise

It also has the following column-wise description. Note that only column kcol of E := E
[n]
add(krow, kcol ;α) differs

from In.

coli

(
E
[n]
add(krow, kcol ;α)

)
=

{
coli(In) + α · colkrow(In) if i = kcol

coli (In) otherwise

Let R be a commutative ring with identity and S be a subring of R. Since S and R must share an identity

element, the elementary dilations over R are exactly those over S. Given an elementary dilation E
[n]
add(kj , ki ; r)

over R with r ∈ R, it should be clear that if r ∈ S, then E
[n]
add(kj , ki ; r) is also an elementary dilation over S.

More specifically, E
[n]
add(kj , ki ; r) ∈ GL(n, S).

However, we do not have this nice relationship for elementary dilations. That is, an elementary dilation
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E
[n]
dilate(k, r) over R with r ∈ R× is not generally an elementary dilation over S even if r ∈ S. In particular,

E
[n]
dilate(k, r) is that over S only if r is invertible in S. This distinction becomes extremely significant when

considering which elementary matrices we can use for matrix reduction. We consider some relevant cases below.

1. If R = F is a field, then any nonzero element of F can be used as the dilation multiplier µ in E
[n]
dilate(k, µ).

For example, row reduction of a matrix with R entries allows the multiplication of any entry by a nonzero

constant. This is because E
[n]
dilate(k, a) is a valid elementary dilation over R for any nonzero a ∈ R.

2. In the case of R = Z, the family of elementary dilations over Z is much smaller than that of R, despite
Z ⊆ R, since the only units of Z are 1 and −1. So, when performing row reduction on matrices over Z,
we can only multiply each row by either 1 (which does nothing) or −1.

As another example, let M = E
[3]
dilate(1, 2) with multiplier µ = 2. Observe that M is a valid

elementary dilation over R since µ = 2 has an inverse of 1
2 ∈ R. Given below is a more visual description

of M and M−1 = E
[3]
dilate

(
1, 12

)
.

M = E
[3]
dilate(1, 2) =

2 0 0

0 1 0

0 0 1

 and M−1 = E
[3]
dilate

(
1,

1

2

)
=

 1
2 0 0

0 1 0

0 0 1


Since 1

2 ̸∈ Z, M−1 ̸∈ M3,3(Z) and M−1 is not a valid elementary dilation over Z.

3. In the case of R = Q[x], the elementary dilations over Q and those of Q[x] are exactly the same since

they share the same group of units, i.e. Q× = (Q[x])× = Q \ {0}.

So, when performing row reduction on a matrix over Q[x], we cannot use an elementary dilation

to reduce the powers since xt ̸∈ Q[x] for t ∈ Z with t < 0. For example, let M ∈ M3,2(Q[x]) be as given

below.

M =

(
x3 0 0

0 x 1

)
The following row operation on M is not valid as a matrix operation over Q[x]:

E
[n]
dilate

(
1, x−3

)
M =

(
x−3 0

0 1

)(
x3 0 0

0 x 1

)
=

(
1 0 0

0 x 1

)

In particular, E
[n]
dilate

(
1, x−3

)
̸∈ M2,2(Q[x]) and we cannot multiply the first row of M by x−3.

We provide a visual description of elementary dilations below.

E
[n]
dilate

(
k , µ

)
=

i=1 ··· k−1 k k+1 ··· n ◁ column indices

j=1 1 · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
...

k−1 0 1 0 0 0

k 0 0 µ 0 0

k+1 0 0 0 1 0
...

...
...

...
...

. . .
...

n 0 · · · 0 0 0 · · · 1
△

row indices





Color Scheme:

row or column index

dilation multiplier µ

with uncolored entries
agreeing with In

Below, we provide a characterization of row and column operations on matrices relative to these elementary

matrices.
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Proposition A2.7. Elementary Row Operations on a matrix A ∈ Mm,n(R) correspond to multiplying A

by some elementary matrix in GL(m,R) on the left. In particular:

i. Row Permutation or Row Swapping. The product E
[m]
swap(k1, k2)A corresponds to swapping the

k1
th and k2

th rows of A, i.e.

rowj

(
E
[n]
swap(k1, k2)A

)
=


rowk2(A) if j = k1

rowk1(A) if j = k2

rowj(A) otherwise

ii. Row Dilation or Row Multiplication. The product E
[m]
dilate(k, µ)A corresponds to multiplying the

kth row by a unit µ ∈ R×, i.e.

rowj

(
E
[n]
dilate(k, µ)A

)
=

{
µ rowj(A) if j = k

rowj(A) otherwise

iii. Row Addition. With α ∈ R and column indices k ̸= p, the product E
[m]
add(k, p, α)A corresponds to

adding an α-multiple of the pth row of A to the kth row of A, i.e.

rowj

(
E
[n]
add(k, p ;α)A

)
=

{
rowk(A) + α rowp(A) if j = k

rowj(A) otherwise

Note that the first argument k in E
[m]
add(k, p, α)A is the target row.

Proposition A2.8. Elementary Column Operations on a matrix A ∈Mm,n(R) correspond multiplying A

by some elementary matrix in GL(n,R) on the left. In particular:

i. Column Permutation or Column Swapping. The product AE
[n]
swap(k1, k2) corresponds to swapping

the k1
th and k2

th column of A, i.e.

coli

(
AE

[n]
swap(k1, k2)

)
=


colk2(A) if i = k1

colk1(A) if i = k2

coli(A) otherwise

ii. Column Dilation or Column Multiplication. The product AE
[n]
dilate(k, µ) corresponds to multiply-

ing the kth column of A by a unit µ ∈ R×, i.e.

coli

(
AE

[n]
dilate(k, µ)

)
=

{
µ colk(A) if i = k

coli(A) otherwise

iii. Column Addition. With α ∈ R and column indices k ̸= p, the product E
[n]
add(p, k ;α) corresponds to

adding an α-multiple of the pth column of A to the kth column of A, i.e.

coli

(
AE

[n]
add(p, k ;α)

)
=

{
colk(A) + α colp(A) if i = k

coli(A) otherwise

Note that the second argument k in E
[n]
add(p, k ;α) is the target column.
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Appendix A3. Notes on Ring and Module Theory

For reference, we have listed some relevant basic definitions and notation involving rings and modules. These

are mostly taken from the texts Algebra: An Approach to Module Theory [AW92] by William Adkins and Steven

Weintraub, and Abstract Algebra [DF03] by David Dummit and Richard Foote.

Definition A3.1. Let R be a commutative ring. An ideal S of a ring R is a subring of R such that RS ⊆ S and

SR ⊆ S, i.e. the subring S is closed under left and right multiplication of elements of R. An ideal S ⊆ R is called

principal if S can be generated by a single element, i.e. there exists a ∈ R such that S = Ra = {ra : r ∈ R}.
In this case, we write S = (a) and say S is generated by a ∈ R.

Remark. In some references, S = (a) is written as S = ⟨a⟩, i.e. with angle brackets. We avoid using this

notation in this paper for clarity, e.g. in cases where torsion is present. Instead, we use angle brackets

as described in Definition A3.7, i.e. ⟨a⟩ is usually interpreted as Z⟨a⟩.

Below, we provide a definition for PIDs. Note that, in this paper, we almost always require that the ring

R be at least a PID.

Definition A3.2. An integral domain is a nonzero commutative ring R with (multiplicative) identity 1R ∈ R
such that product of any two nonzero elements of R is nonzero. A principal ideal domain R is an integral

domain such that every ideal of R is principal.

Remark. Note that some references do not necessarily require integral domains to have identities. For contrast,

an example of a commutative ring without identity is 2Z.

We also have references to Euclidean domains in this paper but we have determined that an exact definition

for such is not relevant. It should suffice to know that all Euclidean domains are PIDs and are equipped with some

sort of division algorithm, in which quotients and remainders are well-defined and unique. Examples of Euclidean

domains (and therefore, PIDs) include the integers Z, all fields F, and polynomial rings F[x] for any field F.
Note that the polynomial ring Z[x] is not a PID. For example, the ideal (2, x) = {2f + xg : f, g ∈ Z[x]} ⊆ Z[x]
is not principal.

Next, we identify terminology involving properties of modules.

Definition A3.3. An R-module M is called cyclic if it can be generated by a single element m ∈ M , i.e.

Rm = {rm : r ∈ R} =M .

Note that R can be viewed as an cyclic R-module generated by its identity element 1 ∈ R. Similarly, given

d ∈ R, the quotient R/ (d) is a cyclic R-module with underlying abelian group R/ (d) and action s · [r] = [rs]

generated by the coset [1].

We also talk about notions of torsion and free involving modules over a PID. We provide definitions

involving these below.

Definition A3.4. Let M be a module over a commutative ring R. A subset B ⊆ M is called a basis of M

if each element of M can be written as a unique R-linear combination of elements of B. An R-module M is

called free if it has a basis.
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Definition A3.5. Let M be a module over a commutative ring R. We say that m ∈M is a torsion element

of M if there exists some nonzero r ∈ R such that rm = 0. If M has no torsion elements, then M is called

torsion-free. If every element of M is torsion, then M is called a torsion module.

Modules over PIDs are considered “well-behaved” in that torsion and free can considered distinct notions

in such modules. A rigorous discussion of how this works is outside the scope of this paper and we refer to

[DF03, Chapter 12] and [AW92, Chapter 3] for more details. Listed below are a number of relevant results for

reference.

1. Let R be an integral domain and let M be an R-module. Then, the subset T(M) := {m ∈ M : rm =

0 for some nonzero r ∈ R} ⊆M is a submodule ofM and the quotientM/T(M) is torsion-free [AW92,

Proposition 3.2.18].

2. Let R be an integral domain and let M be an R-module. If M is free, then M is torsion-free [AW92,

Proposition 3.4.8]. Conversely: If M is a finitely generated torsion-free module over a PID R, then M

is free [AW92, Theorem 3.6.6]. Therefore, a module over a PID are free if and only if it is torsion-free.

3. Let M be a module over a PID R. If M finitely generated, then M ∼= T(M) ⊕M / T(M) [AW92,

Corollary 3.4.17]. Since M /T(M) is torsion-free and therefore free, each element m ∈ M decomposes

uniquely into a “free” component and “torsion” component.

4. Let R be a commutative ring with identity. If M is a free R-module with a finite basis, then every basis

of M has the same number of elements [AW92, Corollary 3.6.18]. This allows the notion of “rank” to

be well-defined for free R-modules and implies that all free R-modules of the same rank are isomorphic.

5. If M and N are finitely generated modules over a PID R, then M ∼= N if and only if T(M) ∼= T(N)

and rank(M/T(M)) = rank(N /T(N)) [AW92, Corollary 3.6.20]. This determines that the “free part”

of M , i.e. the summand M/T(M) is unique up to isomorphism.

This motivates the following terminology for finitely generated modules over a PID.

Definition A3.6. LetM be a finitely generated module over a PID R. Define the torsion component T(M)

(also torsion submodule) and the free component F(M) of M to be submodules of M given as follows:

T(M) :=
{
m ∈M : rm = 0 for some nonzero r ∈ R

}
and F(M) :=M

/
T(M)

Let the rank of M , denoted rank(M), be the cardinality of any basis of F(M).

In Section 4.1 and Section 4.2, we examine a proof of the Structure Theorem (Theorem 4.1.1) in ModR and

discuss how we can calculate invariant factor decompositions for finitely generated modules over a PID using

presentations and matrix reduction.

In this expository paper, we usually define R-modules (particularly in examples) using formal sums of some

set of indeterminates for convenience. We include relevant definitions below.

Definition A3.7. Let R be a PID. Let A = {a1, a2, . . . , an} be some set of indeterminates.

i. An R-formal sum in A is an expression in the form a =
∑n
i=1 riai = r1a1 + r2a2 + · · · + rna

n for

some r1, . . . , rn ∈ R. When R is unambiguous, we may refer to
∑n
i=1 riai as a formal sum in A. We

may also say that a is a formal sum of elements of A.

ii. The R-module generated by A is the free R-module with basis in correspondence with A. We usually
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write elements of R⟨A⟩ as formal sums in A with coefficients in R, i.e.

R⟨A⟩ :=

{
n∑
i=1

riai : ri ∈ R, ai ∈ R for all i = 1, . . . , n

}

When an R-module M is generated this way, we may write M = R⟨A⟩ or M = R⟨a1, . . . , an⟩.

Remark. We somewhat abuse notation and also use R⟨−⟩ to generate free submodules of R⟨A⟩. For example,

letM = R⟨a, b⟩. Then, we may write R⟨2b⟩ to refer to the submodule R⟨2b⟩ = {r · 2b : r ∈ R} = (2b),

treating 2b as an element of R⟨b⟩ rather than an indeterminate distinct from b. In this case, we prefer

to write R⟨2b⟩ to emphasize that R⟨2b⟩ is free.

Below, we identify notation for matrices related to free modules and homomorphisms between free modules,

adapted from [AW92, Section 4.3].

Definition A3.8. Let M and N be modules over a commutative ring R with ordered bases A = (α1, . . . , αm)

and S = (σ1, . . . , σn) respectively. Let φ : N →M be a module homomorphism.

i. The coordinate vector [α]A ∈ Mm,1(R) of α =
∑m
j=1 rjαj ∈M relative to A is the column vector

given by [α]A(j) = rj for j ∈ {1, . . . ,m}, i.e. [α]A = (r1, r2, · · · , rm)⊤.

ii. The matrix [φ]A,S ∈ Mm,n(R) of φ relative to A and S is the matrix given by

coli[φ]A,S = [φ(σi)]A for all i ∈ {1, . . . , n}.

If A and S are the standard bases for M and N respectively (if such are defined), then we may suppress the

subscripts and write [α] and [φ] for [α]A and [φ]S,A respectively.
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Appendix A4. A Brief Review of Categories and Functors

Below, we list a number of basic definitions and results relevant in this expository paper, mostly taken from the

text Category Theory in Context [Rie16, Chapter 1] by Emily Riehl.

Note that there are some topics in category theory that are relevant to what is discussed in this paper (albeit

some tangentially) that are not included in this appendix, e.g. abelian categories and homological algebra. For

said topics, we recommend Introduction to Homological Algebra [Rot08, Chapters 1 and 5] by Joseph Rotman

and Introduction to Homological Algebra [Wei95, Chapter 1 and Appendix A] for introductory reading.

Definition A4.1. [Rie16, Definition 1.1.1] A category C consists of a class Ob(C) of objects and a class

Hom(C) of morphisms such that all the following conditions are satisfied:

i. Each morphism has specified domain and codomain objects. This relationship is typically denoted

by f : X → Y , where f ∈ Hom(C) with X and Y as its domain and codomain objects respectively.

ii. Each object X ∈ Ob(C) has a designated identity morphism 1X : X → X.

iii. For any pairs for morphisms f, g ∈ Hom(C) such that f : X → Y and g : Y → Z (i.e. f and g are

composable), there exists a specified composite morphism g ◦ f ∈ Hom(C) such that gf : X → Z.

The collection of these assignments is usually referred as the composition law of C.

iv. Composition is unital with identity morphisms, i.e. for any morphism f ∈ Hom(C) with f : X → Y ,

f ◦ 1X = f and f = 1Y ◦ f .

v. Composition is associative, i.e. for any f, g, h ∈ Hom(C) with f : X → Y , g : Y → Z, and h : Y → Z,

the composites h ◦ (g ◦ f) and (h ◦ g) ◦ f must be equal.

A subcategory D of some category C is another category whose classes of objects and of morphisms are

subclasses of those of C.

Remark. For our purposes, it suffices to know that classes act similarly to sets, in that they are collections of

objects. They are distinct from sets to avoid paradoxes such as Russell’s paradox.

The class of morphisms and the composition law of a category determines the notion of similarity, i.e.

isomorphism relations, in said category. Below, we include a category-level definition of isomorphisms.

Definition A4.2. A morphism f : X → Y in a category C is called an isomorphism if there exists another

morphism g : X → Y such that g ◦ f = idX and f ◦ g = idY . The objects X and Y are isomorphic in C if

there exists a isomorphism f : X → Y . In this case, we write X ∼=C Y . If the category C is clear from context,

we usually write X ∼= Y for brevity.

Note that, in general, equality between objects and morphisms in a category C are considered in the

abstract sense. This is because not all categories are concrete categories. Loosely speaking, a category C is a

concrete category if each object X ∈ Ob(C) are sets (usually with some additional structure). If a category is

not concrete, then notions such as injective maps and surjective maps, as defined in set theory, are ambiguous.

For morphisms that act similarly, new category-level terms are introduced. For example, injective maps are

monomorphisms and surjective maps are epimorphisms.

With the exception of Poset(I,≤) (see Definition A4.3 below), all relevant categories discussed in this

expository paper are concrete categories. For clarity, we prefer the set-level terminology when applicable. Listed

below are some of these categories, taken from [Rie16, Example 1.1.3] and [BS14]. Note that the composition

law on the categories below are given by the usual function composition.
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1. Set denotes the category of sets (as objects) and functions (as morphisms). Isomorphisms in this

category are bijections, as is usually defined in set theory.

2. Top denotes the category of topological spaces (as objects) and continuous maps (as morphisms). Iso-

morphisms in this category are homeomorphisms. Recall that composition of continuous maps are

continuous.

3. Let F be a field. VectF denotes the category of F-vector spaces (as objects) and F-linear maps (as

morphisms). Isomorphisms in VectF are usually called isomorphisms, although we may call these vec-

tor space isomorphisms for clarity, VectF has a subcategory denoted FinVectF composed of finite-

dimensional F-vector spaces, with the class of morphisms appropriately restricted.

4. Let R be a ring. ModR (or RMod) refers to the category of right (or left) R-modules as objects and

R-module homomorphisms as morphisms. Note that if R is a commutative ring, then ModR = RMod.

Since we generally require R to be a PID in this paper, R is commutative and we refer to ModR
as simply the category of R-modules. We also prefer using the symbol ModR for formatting purposes.

As with VectF, we may refer to isomorphisms in ModR R-module isomorphisms for clarity.

5. Let R be a PID. Ch-ModR denotes the category of chain complexes of R-modules as objects and

chain maps as morphisms. In this paper, we use the following definition for chain complexes: A chain

complex C∗ of R-modules is a Z-indexed collection of R-modules Cn and R-module homomorphisms

∂n : Cn → Cn−1. In this case, we write C∗ = (Cn, ∂n)n∈Z and call ∂n the differentials of C∗.

In this paper, for brevity, we usually call categories only by their objects, e.g. we say ModR is the category of

R-modules, without reference to R-module homomorphisms.

Poset categories play a huge role in this expository paper. We provide a definition taken from [Rie16,

Example 1.1.4], but with notation slightly changed for clarity.

Definition A4.3. The poset category Poset(I,≤), also called indexing category, induced by a poset

(I,≤) is the category constructed as follows:

i. The elements of I are exactly the objects of Poset(I,≤).

ii. For all a, b ∈ I, there exists a unique morphism a→ b if and only if a ≤ b.

iii. Given all a ∈ I, the morphism a→ a is the identity morphism of the object a.

iv. For all a, b, c ∈ I with a ≤ b ≤ c, the composition law on the morphism is given by (c ← a) = (c ←
b) ◦ (b← c).

Posets can usually be described and defined using simple directed graphs. In particular, a poset (I,≤)
corresponds to a simple directed graph where the vertices represent the elements of I and the arrows represent

the relations in ≤. For example, the poset (N0,≤) has the corresponding directed graph:

Note that N0 is a totally ordered set and therefore, is also a poset. This interpretation also extends to the

induced category Poset(I,≤), wherein the vertices and arrows of the graph represent the objects and morphisms

of Poset(I,≤) respectively.

Since posets have to be antisymmetric, the only isomorphisms on Poset(I,≤) are the identity morphisms.

Given any a, b ∈ I with a ≤ b, there cannot be a relation b ≤ a unless a = b. In that case, there does not exist

a morphism b→ a. In other words, the notions of equality and isomorphisms are the same in Poset(I,≤).
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Functors are also present in a significant amount in this expository paper. Roughly speaking, functors are

functions between categories, but instead of just having assignments on the objects, there are also assignments

on the morphisms. We provide a definition of functors below taken from [Rie16, Definition 1.3.1]

Definition A4.4. A functor F : C→ D between categories C and D consists of the following:

i. An (object) assignment of each object X in C to some object A in D, denoted F (X) = A.

ii. A (morphism) assignment of each morphism f : X → Y in C to a morphism h : F (X) → F (Y ) in D,

denoted F (f) = h. Note that the domain and codomain of the morphism assignment are determined

by the object assignment.

iii. The functor must respect composition, i.e. for any composable pair f and g in C, F (f) and F (g) must

also be composable in D, i.e. F (f ◦ g) = F (f) ◦ F (g).

iv. The functor must respect identity maps, i.e. the functor assigns the identity morphism idX of any object

X in C to the identity morphism idF (X) of F (X) in D, i.e. F (idX) = idF (X).

We call C the domain category and D as the codomain category. The last two conditions listed above are

often called functorial properties.

Remark. More generally, the statement above defines a covariant functor. There is another type of functor

called a contravariant functor but it is not relevant to this paper.

A number of constructions in algebraic topology can be considered functors, which is appropriate given

that category theory is said to be motivated by observations on algebraic topology theory.

Example A4.5. Listed below are some functors related to homology and simplicial homology, taken from

[Rie16, Example 1.3.2] and [Hat02, Section 2.3].

1. The nth singular homology functor Hn(−;R) : Top→ModR sends a topological space X to its nth

homology group Hn(X;R) with coefficients in a PID R and n ∈ N0. When R = Z, the nth homology

functor is usually written as Hn(−), suppressing the reference to coefficient ring Z. The morphism

assignment sends an inclusion map i : X → Y to an induced homomorphism i∗ : Hn(X;R)→ Hn(Y ;R)

as denoted in [Hat02].

2. Abstractly, homology can be calculated from any chain complex. For each n ∈ Z, we have the nth

chain homology functor Hn(−) : Ch-ModR →ModR that sends a chain complex C∗ = (Cn, ∂n)n∈Z
of R-modules to its nth homology group by the following construction:

Hn(C∗) = ker(∂n) / im(∂n+1)

The morphism assignment sends the chain map φ∗ : C∗ → A∗ with φ∗ = (φn : Cn → An)n∈Z to

the homomorphism Hn(C∗) → Hn(A∗) induced by the cokernel operation on φn : Cn → An and

φn+1 : Cn+1 → An+1.

3. The “free” functor F : Set→ModR sends a set X to the free R-module R⟨X⟩, with X treated as a set

of indeterminates (see Definition A3.7) and sends a function f : X → Y to the unique homomorphism

R⟨X⟩ → R⟨Y ⟩ defined by mapping basis elements to basis elements.

As mentioned earlier, poset categories Poset(I,≤) can be described using graphs. In the same vein, we

can illustrate commutative diagrams as functors with some poset category as the domain category. We provide

a definition below taken from [Rie16, Definition 1.6.4].
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Definition A4.6. A diagram is a functor F : Poset(I,≤)→ C from some poset category Poset(I,≤) to some

other category C.

Given a diagram F : Poset(I,≤)→ C, the vertices of the directed graph corresponding to Poset(I,≤) are
replaced by objects and the arrows by morphisms. The transitivity of (I,≤) and the composition axiom for

functors require the resulting diagram (in the non-category theory-sense) be commutative. We provide a simple

example involving squares:

Example A4.7. Let the poset (S,≤) be given by the following directed graph:

Let V1, V2,W1,W2 be R-vector spaces. Let α1 : V1 → V2, α2 : W1 → W2 and φ1 : V1 → W1, φ2 : V2 → W2 be

linear maps. Then, the requirement that φ2 ◦ α1 = α2 ◦ φ1 can be restated as follows: Let F : Poset(S,≤) →
VectF be an assignment on the objects and morphisms of Poset(S,≤) as follows:

F (a) = V1 F (c) = V2 F (b) =W1 F (d) =W2

F (a→ b) = φ1 F (a→ c) = α1 F (b→ d) = α2 F (c→ d) = φ2

We illustrate the assignment F as a diagram below:

Then, φ2 ◦α1 = α2 ◦φ1 if and only if F represents a functor. By definition of functor, the morphisms in the form

x→ x are mapped to identity linear maps. In terms of compositions, we have the following chain of equalities:

φ2 ◦ α1 = F (d← c) ◦ F (c← a)
⋆
= F (d← a)

⋆
= F (d← b) ◦ F (b← a) = α2 ◦ φ1

The equalities labeled by ⋆ are due to the uniqueness of morphisms in Poset(S,≤).
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